{"title":"零叉角、零尾迹、零动力的双滑单轨车辆:可乘性、相位滞后和稳态倾斜角测试","authors":"P. Ethier","doi":"10.59490/645be2c02d0b52c3ea6fba8d","DOIUrl":null,"url":null,"abstract":"The 2-Skate was tested but the rider might have been a circus acrobat. So the present study aimed at determining if ordinary persons can ride it with confidence, with the same phase lag between torso and vehicle leaning when slaloming, and the same torso and vehicle lean angles in steady state curves as predicted. 12 riders tested the 2-Skates and on their first trial, they could ride it and go slaloming. Phase lag and lean angle were as predicted by the Torso-Arms-Handlebar Steering Theory presented by Ethier, with differential non-holonomic and servomechanism system equations. This confirmation (a) sheds light on how bicycles are steered, (b) clarifies that Countersteering is done automatically at low speeds, (c) supports and clarifies the way mountain bike steering is taught, (d) suggests a slight modification in teaching motorcycle Countersteering, (e) can be used to develop different approachs to 2-Wheeler simulators, (f) and can renew interest for motorcycles with seat belts and protective structure like the BMW-C1 and the award winning Peraves e-Tracer.","PeriodicalId":141471,"journal":{"name":"The Evolving Scholar - BMD 2023, 5th Edition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-Skate-Single-Track-Vehicle with Zero-Fork-Angle & Zero-Trail & Zero-Power: Tested for Rideability, Phase-Lag and Steady-State-Lean-Angles\",\"authors\":\"P. Ethier\",\"doi\":\"10.59490/645be2c02d0b52c3ea6fba8d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2-Skate was tested but the rider might have been a circus acrobat. So the present study aimed at determining if ordinary persons can ride it with confidence, with the same phase lag between torso and vehicle leaning when slaloming, and the same torso and vehicle lean angles in steady state curves as predicted. 12 riders tested the 2-Skates and on their first trial, they could ride it and go slaloming. Phase lag and lean angle were as predicted by the Torso-Arms-Handlebar Steering Theory presented by Ethier, with differential non-holonomic and servomechanism system equations. This confirmation (a) sheds light on how bicycles are steered, (b) clarifies that Countersteering is done automatically at low speeds, (c) supports and clarifies the way mountain bike steering is taught, (d) suggests a slight modification in teaching motorcycle Countersteering, (e) can be used to develop different approachs to 2-Wheeler simulators, (f) and can renew interest for motorcycles with seat belts and protective structure like the BMW-C1 and the award winning Peraves e-Tracer.\",\"PeriodicalId\":141471,\"journal\":{\"name\":\"The Evolving Scholar - BMD 2023, 5th Edition\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Evolving Scholar - BMD 2023, 5th Edition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59490/645be2c02d0b52c3ea6fba8d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Evolving Scholar - BMD 2023, 5th Edition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59490/645be2c02d0b52c3ea6fba8d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2-Skate-Single-Track-Vehicle with Zero-Fork-Angle & Zero-Trail & Zero-Power: Tested for Rideability, Phase-Lag and Steady-State-Lean-Angles
The 2-Skate was tested but the rider might have been a circus acrobat. So the present study aimed at determining if ordinary persons can ride it with confidence, with the same phase lag between torso and vehicle leaning when slaloming, and the same torso and vehicle lean angles in steady state curves as predicted. 12 riders tested the 2-Skates and on their first trial, they could ride it and go slaloming. Phase lag and lean angle were as predicted by the Torso-Arms-Handlebar Steering Theory presented by Ethier, with differential non-holonomic and servomechanism system equations. This confirmation (a) sheds light on how bicycles are steered, (b) clarifies that Countersteering is done automatically at low speeds, (c) supports and clarifies the way mountain bike steering is taught, (d) suggests a slight modification in teaching motorcycle Countersteering, (e) can be used to develop different approachs to 2-Wheeler simulators, (f) and can renew interest for motorcycles with seat belts and protective structure like the BMW-C1 and the award winning Peraves e-Tracer.