基于听觉感知的可接受小波包树语音识别

N. S. Nehe, R. S. Holambe
{"title":"基于听觉感知的可接受小波包树语音识别","authors":"N. S. Nehe, R. S. Holambe","doi":"10.1109/ICIINFS.2008.4798363","DOIUrl":null,"url":null,"abstract":"This paper presents the use of auditory perception based admissible wavelet packet tree (WPT) for partitioning of speech frequencies into different bands based on the Mel scale or the Bark Scale. The proposed WPTs selected using root mean square error (RMSE) criterion mimic the Mel scale or the bark scale more accurately and hence the human auditory system. Performance of the features obtained from the proposed WPTs is compared with Mel frequency cepstral coefficients (MFCC). The algorithms are evaluated using NIST TI-46 isolated-word database using hidden Markov model (HMM) as a classifier. Experimental results show that the performance of proposed features is better than MFCC and other wavelet features for isolated word recognition (IWR).","PeriodicalId":429889,"journal":{"name":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Auditory Perception Based Admissible Wavelet Packet Trees For Speech Recognition\",\"authors\":\"N. S. Nehe, R. S. Holambe\",\"doi\":\"10.1109/ICIINFS.2008.4798363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the use of auditory perception based admissible wavelet packet tree (WPT) for partitioning of speech frequencies into different bands based on the Mel scale or the Bark Scale. The proposed WPTs selected using root mean square error (RMSE) criterion mimic the Mel scale or the bark scale more accurately and hence the human auditory system. Performance of the features obtained from the proposed WPTs is compared with Mel frequency cepstral coefficients (MFCC). The algorithms are evaluated using NIST TI-46 isolated-word database using hidden Markov model (HMM) as a classifier. Experimental results show that the performance of proposed features is better than MFCC and other wavelet features for isolated word recognition (IWR).\",\"PeriodicalId\":429889,\"journal\":{\"name\":\"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2008.4798363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2008.4798363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了基于听觉感知的可接受小波包树(WPT)在Mel尺度或Bark尺度的基础上将语音频率划分为不同的频带。使用均方根误差(RMSE)标准选择的WPTs更准确地模拟了Mel量表或bark量表,从而更准确地模拟了人类听觉系统。从所提出的WPTs中获得的特征性能与Mel频率倒谱系数(MFCC)进行了比较。使用NIST TI-46孤立词数据库,使用隐马尔可夫模型(HMM)作为分类器对算法进行评估。实验结果表明,所提特征在孤立词识别方面的性能优于MFCC和其他小波特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auditory Perception Based Admissible Wavelet Packet Trees For Speech Recognition
This paper presents the use of auditory perception based admissible wavelet packet tree (WPT) for partitioning of speech frequencies into different bands based on the Mel scale or the Bark Scale. The proposed WPTs selected using root mean square error (RMSE) criterion mimic the Mel scale or the bark scale more accurately and hence the human auditory system. Performance of the features obtained from the proposed WPTs is compared with Mel frequency cepstral coefficients (MFCC). The algorithms are evaluated using NIST TI-46 isolated-word database using hidden Markov model (HMM) as a classifier. Experimental results show that the performance of proposed features is better than MFCC and other wavelet features for isolated word recognition (IWR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信