基于迭代集合卡尔曼平滑的地震波形反演

M. Gineste, J. Eidsvik, Y. Zheng
{"title":"基于迭代集合卡尔曼平滑的地震波形反演","authors":"M. Gineste, J. Eidsvik, Y. Zheng","doi":"10.3997/2214-4609.201900038","DOIUrl":null,"url":null,"abstract":"Summary The seismic inverse problem is considered in a Bayesian framework and uses a sequential filtering approach to invert for elastic parameters. The method employs an iterative ensemble smoother to estimate the subsurface parameters and from the ensemble, an estimation uncertainty can be extracted. The sequential filtering conditions over partitions of the entire data record in order to drive the estimation process in a top-down manner and regularize the inversion process. The method is presented with a synthetic example using seismic shot record for a 1D medium.","PeriodicalId":350524,"journal":{"name":"Second EAGE/PESGB Workshop on Velocities","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seismic Waveform Inversion Using an Iterative Ensemble Kalman Smoother\",\"authors\":\"M. Gineste, J. Eidsvik, Y. Zheng\",\"doi\":\"10.3997/2214-4609.201900038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The seismic inverse problem is considered in a Bayesian framework and uses a sequential filtering approach to invert for elastic parameters. The method employs an iterative ensemble smoother to estimate the subsurface parameters and from the ensemble, an estimation uncertainty can be extracted. The sequential filtering conditions over partitions of the entire data record in order to drive the estimation process in a top-down manner and regularize the inversion process. The method is presented with a synthetic example using seismic shot record for a 1D medium.\",\"PeriodicalId\":350524,\"journal\":{\"name\":\"Second EAGE/PESGB Workshop on Velocities\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second EAGE/PESGB Workshop on Velocities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201900038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second EAGE/PESGB Workshop on Velocities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在贝叶斯框架中考虑地震反演问题,并采用顺序滤波方法对弹性参数进行反演。该方法采用迭代集合平滑器估计地下参数,并从集合中提取估计的不确定性。对整个数据记录分区的顺序过滤条件,以自上而下的方式驱动估计过程,并使反演过程规范化。以一维介质的地震炮点记录为例,介绍了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic Waveform Inversion Using an Iterative Ensemble Kalman Smoother
Summary The seismic inverse problem is considered in a Bayesian framework and uses a sequential filtering approach to invert for elastic parameters. The method employs an iterative ensemble smoother to estimate the subsurface parameters and from the ensemble, an estimation uncertainty can be extracted. The sequential filtering conditions over partitions of the entire data record in order to drive the estimation process in a top-down manner and regularize the inversion process. The method is presented with a synthetic example using seismic shot record for a 1D medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信