{"title":"文档级事件抽取中关系建模的关系增强注意转换器","authors":"Yuan Liang, Zhuoxuan Jiang, Di Yin, Bo Ren","doi":"10.48550/arXiv.2206.03377","DOIUrl":null,"url":null,"abstract":"In document-level event extraction (DEE) task, event arguments always scatter across sentences (across-sentence issue) and multipleevents may lie in one document (multi-event issue). In this paper, we argue that the relation information of event arguments is of greatsignificance for addressing the above two issues, and propose a new DEE framework which can model the relation dependencies, calledRelation-augmented Document-level Event Extraction (ReDEE). More specifically, this framework features a novel and tailored transformer,named as Relation-augmented Attention Transformer (RAAT). RAAT is scalable to capture multi-scale and multi-amount argument relations. To further leverage relation information, we introduce a separate event relation prediction task and adopt multi-task learning method to explicitly enhance event extraction performance. Extensive experiments demonstrate the effectiveness of the proposed method, which can achieve state-of-the-art performance on two public datasets.Our code is available at https://github.com/TencentYoutuResearch/RAAT.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"RAAT: Relation-Augmented Attention Transformer for Relation Modeling in Document-Level Event Extraction\",\"authors\":\"Yuan Liang, Zhuoxuan Jiang, Di Yin, Bo Ren\",\"doi\":\"10.48550/arXiv.2206.03377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In document-level event extraction (DEE) task, event arguments always scatter across sentences (across-sentence issue) and multipleevents may lie in one document (multi-event issue). In this paper, we argue that the relation information of event arguments is of greatsignificance for addressing the above two issues, and propose a new DEE framework which can model the relation dependencies, calledRelation-augmented Document-level Event Extraction (ReDEE). More specifically, this framework features a novel and tailored transformer,named as Relation-augmented Attention Transformer (RAAT). RAAT is scalable to capture multi-scale and multi-amount argument relations. To further leverage relation information, we introduce a separate event relation prediction task and adopt multi-task learning method to explicitly enhance event extraction performance. Extensive experiments demonstrate the effectiveness of the proposed method, which can achieve state-of-the-art performance on two public datasets.Our code is available at https://github.com/TencentYoutuResearch/RAAT.\",\"PeriodicalId\":382084,\"journal\":{\"name\":\"North American Chapter of the Association for Computational Linguistics\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Chapter of the Association for Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.03377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.03377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RAAT: Relation-Augmented Attention Transformer for Relation Modeling in Document-Level Event Extraction
In document-level event extraction (DEE) task, event arguments always scatter across sentences (across-sentence issue) and multipleevents may lie in one document (multi-event issue). In this paper, we argue that the relation information of event arguments is of greatsignificance for addressing the above two issues, and propose a new DEE framework which can model the relation dependencies, calledRelation-augmented Document-level Event Extraction (ReDEE). More specifically, this framework features a novel and tailored transformer,named as Relation-augmented Attention Transformer (RAAT). RAAT is scalable to capture multi-scale and multi-amount argument relations. To further leverage relation information, we introduce a separate event relation prediction task and adopt multi-task learning method to explicitly enhance event extraction performance. Extensive experiments demonstrate the effectiveness of the proposed method, which can achieve state-of-the-art performance on two public datasets.Our code is available at https://github.com/TencentYoutuResearch/RAAT.