通过复杂网络图模型的推理,展示了面向对象遗传编程的力量

M. Medland, Kyle Robert Harrison, B. Ombuki-Berman
{"title":"通过复杂网络图模型的推理,展示了面向对象遗传编程的力量","authors":"M. Medland, Kyle Robert Harrison, B. Ombuki-Berman","doi":"10.1109/NaBIC.2014.6921896","DOIUrl":null,"url":null,"abstract":"Traditionally, GP used a single tree-based representation which does not lend itself well to state-based programs or multiple behaviours. To alleviate this drawback, object-oriented GP (OOGP) introduced a means of evolving programs with multiple behaviours which could be easily extended to state-based programs. However, the production of programs which allowed embedded knowledge and produced readable code was still not easily addressed using the OOGP methodology. Exemplified through the evolution of graph models for complex networks, this paper demonstrates the benefits of a new approach to OOGP inspired by abstract classes and linear GP. Furthermore, the new approach to OOGP, named LinkableGP, facilitates the embedding of expert knowledge while also maintaining the benefits of OOGP.","PeriodicalId":209716,"journal":{"name":"2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Demonstrating the power of object-oriented genetic programming via the inference of graph models for complex networks\",\"authors\":\"M. Medland, Kyle Robert Harrison, B. Ombuki-Berman\",\"doi\":\"10.1109/NaBIC.2014.6921896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, GP used a single tree-based representation which does not lend itself well to state-based programs or multiple behaviours. To alleviate this drawback, object-oriented GP (OOGP) introduced a means of evolving programs with multiple behaviours which could be easily extended to state-based programs. However, the production of programs which allowed embedded knowledge and produced readable code was still not easily addressed using the OOGP methodology. Exemplified through the evolution of graph models for complex networks, this paper demonstrates the benefits of a new approach to OOGP inspired by abstract classes and linear GP. Furthermore, the new approach to OOGP, named LinkableGP, facilitates the embedding of expert knowledge while also maintaining the benefits of OOGP.\",\"PeriodicalId\":209716,\"journal\":{\"name\":\"2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaBIC.2014.6921896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2014.6921896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

传统上,GP使用单一的基于树的表示,这种表示不能很好地用于基于状态的程序或多种行为。为了减轻这个缺点,面向对象的GP (OOGP)引入了一种方法来发展具有多种行为的程序,这种行为可以很容易地扩展到基于状态的程序。然而,允许嵌入知识和产生可读代码的程序的生产仍然不容易使用OOGP方法来解决。本文以复杂网络图模型的演化为例,论证了受抽象类和线性GP启发的OOGP新方法的好处。此外,名为LinkableGP的OOGP新方法促进了专家知识的嵌入,同时也保持了OOGP的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstrating the power of object-oriented genetic programming via the inference of graph models for complex networks
Traditionally, GP used a single tree-based representation which does not lend itself well to state-based programs or multiple behaviours. To alleviate this drawback, object-oriented GP (OOGP) introduced a means of evolving programs with multiple behaviours which could be easily extended to state-based programs. However, the production of programs which allowed embedded knowledge and produced readable code was still not easily addressed using the OOGP methodology. Exemplified through the evolution of graph models for complex networks, this paper demonstrates the benefits of a new approach to OOGP inspired by abstract classes and linear GP. Furthermore, the new approach to OOGP, named LinkableGP, facilitates the embedding of expert knowledge while also maintaining the benefits of OOGP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信