{"title":"四维(para)-Kähler-Weyl结构","authors":"P. Gilkey, S. Nikcevic","doi":"10.2298/PIM1308091G","DOIUrl":null,"url":null,"abstract":"We give an elementary proof of the fact that any 4-dimensional para-Hermitian \n manifold admits a unique para-Kahler-Weyl structure. We then use analytic \n continuation to pass from the para-complex to the complex setting and thereby \n show that any 4-dimensional pseudo-Hermitian manifold also admits a unique \n Kahler-Weyl structure. [Projekat Ministarstva nauke Republike Srbije, br. \n 174012]","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"4-dimensional (para)-Kähler-Weyl structures\",\"authors\":\"P. Gilkey, S. Nikcevic\",\"doi\":\"10.2298/PIM1308091G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an elementary proof of the fact that any 4-dimensional para-Hermitian \\n manifold admits a unique para-Kahler-Weyl structure. We then use analytic \\n continuation to pass from the para-complex to the complex setting and thereby \\n show that any 4-dimensional pseudo-Hermitian manifold also admits a unique \\n Kahler-Weyl structure. [Projekat Ministarstva nauke Republike Srbije, br. \\n 174012]\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1308091G\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1308091G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We give an elementary proof of the fact that any 4-dimensional para-Hermitian
manifold admits a unique para-Kahler-Weyl structure. We then use analytic
continuation to pass from the para-complex to the complex setting and thereby
show that any 4-dimensional pseudo-Hermitian manifold also admits a unique
Kahler-Weyl structure. [Projekat Ministarstva nauke Republike Srbije, br.
174012]