四维(para)-Kähler-Weyl结构

P. Gilkey, S. Nikcevic
{"title":"四维(para)-Kähler-Weyl结构","authors":"P. Gilkey, S. Nikcevic","doi":"10.2298/PIM1308091G","DOIUrl":null,"url":null,"abstract":"We give an elementary proof of the fact that any 4-dimensional para-Hermitian \n manifold admits a unique para-Kahler-Weyl structure. We then use analytic \n continuation to pass from the para-complex to the complex setting and thereby \n show that any 4-dimensional pseudo-Hermitian manifold also admits a unique \n Kahler-Weyl structure. [Projekat Ministarstva nauke Republike Srbije, br. \n 174012]","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"4-dimensional (para)-Kähler-Weyl structures\",\"authors\":\"P. Gilkey, S. Nikcevic\",\"doi\":\"10.2298/PIM1308091G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an elementary proof of the fact that any 4-dimensional para-Hermitian \\n manifold admits a unique para-Kahler-Weyl structure. We then use analytic \\n continuation to pass from the para-complex to the complex setting and thereby \\n show that any 4-dimensional pseudo-Hermitian manifold also admits a unique \\n Kahler-Weyl structure. [Projekat Ministarstva nauke Republike Srbije, br. \\n 174012]\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1308091G\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1308091G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们给出了一个初等证明,证明任何四维对厄米流形都存在唯一的对kahler - weyl结构。然后我们利用解析延拓从拟复集传递到复集,从而证明任何四维伪厄米流形也承认唯一的Kahler-Weyl结构。[南斯拉夫]塞族共和国部长项目;174012]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4-dimensional (para)-Kähler-Weyl structures
We give an elementary proof of the fact that any 4-dimensional para-Hermitian manifold admits a unique para-Kahler-Weyl structure. We then use analytic continuation to pass from the para-complex to the complex setting and thereby show that any 4-dimensional pseudo-Hermitian manifold also admits a unique Kahler-Weyl structure. [Projekat Ministarstva nauke Republike Srbije, br. 174012]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信