N. Xiong, Yingshu Li, J. Park, L. Yang, Yan Yang, Sun Tao
{"title":"一组自主移动机器人的快速高效队形群集","authors":"N. Xiong, Yingshu Li, J. Park, L. Yang, Yan Yang, Sun Tao","doi":"10.1109/IPDPS.2008.4536482","DOIUrl":null,"url":null,"abstract":"The control and coordination of mobile robots in groups that can freely cooperate and move on a plane is a widely studied topic in distributed robotics. In this paper, we focus on the flocking problem: there are two kinds of robots: the leader robot and the follower robots. The follower robots are required to follow the leader robot wherever it goes (following), while keeping a formation they are given in input (flocking). A novel scheme is proposed based on the relative motion theory. Extensive theoretical analysis and simulation results demonstrate that this scheme provides the follower robots an efficient method to follow the leader as soon as possible with the shortest path. Furthermore, this scheme is scalable, and the processing load for every robot is not increased with the addition of more robots.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fast and efficient formation flocking for a group of autonomous mobile robots\",\"authors\":\"N. Xiong, Yingshu Li, J. Park, L. Yang, Yan Yang, Sun Tao\",\"doi\":\"10.1109/IPDPS.2008.4536482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control and coordination of mobile robots in groups that can freely cooperate and move on a plane is a widely studied topic in distributed robotics. In this paper, we focus on the flocking problem: there are two kinds of robots: the leader robot and the follower robots. The follower robots are required to follow the leader robot wherever it goes (following), while keeping a formation they are given in input (flocking). A novel scheme is proposed based on the relative motion theory. Extensive theoretical analysis and simulation results demonstrate that this scheme provides the follower robots an efficient method to follow the leader as soon as possible with the shortest path. Furthermore, this scheme is scalable, and the processing load for every robot is not increased with the addition of more robots.\",\"PeriodicalId\":162608,\"journal\":{\"name\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2008.4536482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2008.4536482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast and efficient formation flocking for a group of autonomous mobile robots
The control and coordination of mobile robots in groups that can freely cooperate and move on a plane is a widely studied topic in distributed robotics. In this paper, we focus on the flocking problem: there are two kinds of robots: the leader robot and the follower robots. The follower robots are required to follow the leader robot wherever it goes (following), while keeping a formation they are given in input (flocking). A novel scheme is proposed based on the relative motion theory. Extensive theoretical analysis and simulation results demonstrate that this scheme provides the follower robots an efficient method to follow the leader as soon as possible with the shortest path. Furthermore, this scheme is scalable, and the processing load for every robot is not increased with the addition of more robots.