Harris B. Daniels, J. Morrow
求助PDF
{"title":"分域纠缠的群论视角","authors":"Harris B. Daniels, J. Morrow","doi":"10.1090/btran/95","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we initiate a systematic study of entanglements of division fields from a group theoretic perspective. For a positive integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and a subgroup <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G subset-of-or-equal-to upper G upper L 2 left-parenthesis double-struck upper Z slash n double-struck upper Z right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo>⊆<!-- ⊆ --></mml:mo>\n <mml:mi>G</mml:mi>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">G\\subseteq GL_2( \\mathbb {Z}/n\\mathbb {Z})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with surjective determinant, we provide a definition for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to represent an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis a comma b right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>a</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(a,b)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-entanglement and give additional criteria for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to represent an explained or unexplained <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis a comma b right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>a</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>b</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(a,b)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-entanglement.</p>\n\n<p>Using these new definitions, we determine the tuples <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis left-parenthesis p comma q right-parenthesis comma upper T right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">((p,q),T)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than q element-of double-struck upper Z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p>q\\in \\mathbb {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> distinct primes and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\n <mml:semantics>\n <mml:mi>T</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> a finite group, such that there are infinitely many non-<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q overbar\">\n <mml:semantics>\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n <mml:annotation encoding=\"application/x-tex\">\\overline {\\mathbb {Q}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-isomorphic elliptic curves over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with an unexplained <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis p comma q right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(p,q)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-entanglement of type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\n <mml:semantics>\n <mml:mi>T</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Furthermore, for each possible combination of entanglement level <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis p comma q right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(p,q)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\n <mml:semantics>\n <mml:mi>T</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we completely classify the elliptic curves defined over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with that combination by constructing the corresponding modular curve and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"j\">\n <mml:semantics>\n <mml:mi>j</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">j</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-map.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A group theoretic perspective on entanglements of division fields\",\"authors\":\"Harris B. Daniels, J. Morrow\",\"doi\":\"10.1090/btran/95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we initiate a systematic study of entanglements of division fields from a group theoretic perspective. For a positive integer <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and a subgroup <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G subset-of-or-equal-to upper G upper L 2 left-parenthesis double-struck upper Z slash n double-struck upper Z right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>G</mml:mi>\\n <mml:mo>⊆<!-- ⊆ --></mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:msub>\\n <mml:mi>L</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G\\\\subseteq GL_2( \\\\mathbb {Z}/n\\\\mathbb {Z})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with surjective determinant, we provide a definition for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to represent an <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis a comma b right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>a</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>b</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(a,b)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-entanglement and give additional criteria for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to represent an explained or unexplained <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis a comma b right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>a</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>b</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(a,b)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-entanglement.</p>\\n\\n<p>Using these new definitions, we determine the tuples <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis left-parenthesis p comma q right-parenthesis comma upper T right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mi>T</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">((p,q),T)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than q element-of double-struck upper Z\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p>q\\\\in \\\\mathbb {Z}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> distinct primes and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\">\\n <mml:semantics>\\n <mml:mi>T</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> a finite group, such that there are infinitely many non-<inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q overbar\\\">\\n <mml:semantics>\\n <mml:mover>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mo accent=\\\"false\\\">¯<!-- ¯ --></mml:mo>\\n </mml:mover>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\overline {\\\\mathbb {Q}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-isomorphic elliptic curves over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with an unexplained <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis p comma q right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(p,q)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-entanglement of type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\">\\n <mml:semantics>\\n <mml:mi>T</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Furthermore, for each possible combination of entanglement level <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis p comma q right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>q</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(p,q)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\">\\n <mml:semantics>\\n <mml:mi>T</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, we completely classify the elliptic curves defined over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> with that combination by constructing the corresponding modular curve and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"j\\\">\\n <mml:semantics>\\n <mml:mi>j</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">j</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-map.</p>\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
引用
批量引用