蜂窝认知无线网络中的无线指纹辅助频谱传感

Xin Wang, Siji Chen, Bin Shen, Taiping Cui
{"title":"蜂窝认知无线网络中的无线指纹辅助频谱传感","authors":"Xin Wang, Siji Chen, Bin Shen, Taiping Cui","doi":"10.1109/WCNC45663.2020.9120852","DOIUrl":null,"url":null,"abstract":"Apart from the received signal energy, geo-location information plays an important role in ameliorating spectrum sensing performance. In this paper, a novel wireless fingerprint (WFP) aided spectrum sensing scheme is proposed. Assisted by the wireless fingerprint database (WFPD), secondary user equipments (SUEs) first identify their locations in the cellular cognitive radio network (CCRN) and then ascertain the white licensed spectrum for opportunistic access. The SUEs can pinpoint their geographical locations via time of arrival (TOA) estimate over the signals received from their surrounding base-stations (BSs). In view of the fact that locations of the primary user (PU) transmitters are either readily known or practically unavailable, the SUEs can search the WFPD or perform support vector machine (SVM) algorithm to determine the availability of the licensed spectrum, according to the locations of themselves and the PU transmitters (PUTs). In addition, to alleviate the deficiency of single SU based sensing, a joint prediction mechanism is proposed on the basis of cooperations of multiple SUs that are geographically nearby. Simulations verify that the proposed scheme achieves higher detection probability and demands less energy consumption than conventional spectrum sensing algorithms.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wireless Fingerprint Aided Spectrum Sensing in Cellular Cognitive Radio Networks\",\"authors\":\"Xin Wang, Siji Chen, Bin Shen, Taiping Cui\",\"doi\":\"10.1109/WCNC45663.2020.9120852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Apart from the received signal energy, geo-location information plays an important role in ameliorating spectrum sensing performance. In this paper, a novel wireless fingerprint (WFP) aided spectrum sensing scheme is proposed. Assisted by the wireless fingerprint database (WFPD), secondary user equipments (SUEs) first identify their locations in the cellular cognitive radio network (CCRN) and then ascertain the white licensed spectrum for opportunistic access. The SUEs can pinpoint their geographical locations via time of arrival (TOA) estimate over the signals received from their surrounding base-stations (BSs). In view of the fact that locations of the primary user (PU) transmitters are either readily known or practically unavailable, the SUEs can search the WFPD or perform support vector machine (SVM) algorithm to determine the availability of the licensed spectrum, according to the locations of themselves and the PU transmitters (PUTs). In addition, to alleviate the deficiency of single SU based sensing, a joint prediction mechanism is proposed on the basis of cooperations of multiple SUs that are geographically nearby. Simulations verify that the proposed scheme achieves higher detection probability and demands less energy consumption than conventional spectrum sensing algorithms.\",\"PeriodicalId\":415064,\"journal\":{\"name\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC45663.2020.9120852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

除了接收到的信号能量外,地理位置信息在改善频谱感知性能方面也起着重要作用。本文提出了一种新的无线指纹辅助频谱感知方案。在无线指纹数据库(WFPD)的辅助下,二次用户设备(SUEs)首先确定自己在蜂窝认知无线网络(CCRN)中的位置,然后确定机会接入的白色许可频谱。sue可以通过从周围基站(BSs)接收到的信号估计到达时间(TOA)来确定其地理位置。鉴于主用户(PU)发射机的位置是已知的或实际上不可用的,sue可以根据自己和PU发射机(put)的位置搜索WFPD或执行支持向量机(SVM)算法来确定许可频谱的可用性。此外,针对单单元感知的不足,提出了一种基于地理位置相近的多个单元协同的联合预测机制。仿真结果表明,与传统的频谱感知算法相比,该方案具有更高的检测概率和更低的能量消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless Fingerprint Aided Spectrum Sensing in Cellular Cognitive Radio Networks
Apart from the received signal energy, geo-location information plays an important role in ameliorating spectrum sensing performance. In this paper, a novel wireless fingerprint (WFP) aided spectrum sensing scheme is proposed. Assisted by the wireless fingerprint database (WFPD), secondary user equipments (SUEs) first identify their locations in the cellular cognitive radio network (CCRN) and then ascertain the white licensed spectrum for opportunistic access. The SUEs can pinpoint their geographical locations via time of arrival (TOA) estimate over the signals received from their surrounding base-stations (BSs). In view of the fact that locations of the primary user (PU) transmitters are either readily known or practically unavailable, the SUEs can search the WFPD or perform support vector machine (SVM) algorithm to determine the availability of the licensed spectrum, according to the locations of themselves and the PU transmitters (PUTs). In addition, to alleviate the deficiency of single SU based sensing, a joint prediction mechanism is proposed on the basis of cooperations of multiple SUs that are geographically nearby. Simulations verify that the proposed scheme achieves higher detection probability and demands less energy consumption than conventional spectrum sensing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信