基于局部判别模型和全局集成的图像聚类性能改进

N. Ahmed, A. Jalil, A. Khan
{"title":"基于局部判别模型和全局集成的图像聚类性能改进","authors":"N. Ahmed, A. Jalil, A. Khan","doi":"10.1109/IBCAST.2012.6177530","DOIUrl":null,"url":null,"abstract":"In this study, novel image clustering algorithm is investigated to improve the clustering performance. We have investigated this model and have achieved improved clustering performance by fine tuning the related model parameters. Yi Yang (2010) proposed clustering algorithm namely local discriminant model and global integration (LDMGI). Clustering parameters are number of nearest neighbours (k) and regularization parameter (λ). The reported parameters are k = 5 and the optimal value of λ selected from set {10-8 - 108} with step size of 102. It is observed that LDMGI clustering performance can be improved with different combination of k and λ. But no criteria exist for the selection of optimal k and λ for best clustering performance. We developed Improved-LDMGI by fine tuning the optimal value of λ in small step size of 0.25 while keeping k = 5 for all image dataset except handwritten image dataset. Significant performance improvement, on average of 7.0 percent, is observed.","PeriodicalId":251584,"journal":{"name":"Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance improvement in image clustering using local discriminant model and global integration\",\"authors\":\"N. Ahmed, A. Jalil, A. Khan\",\"doi\":\"10.1109/IBCAST.2012.6177530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, novel image clustering algorithm is investigated to improve the clustering performance. We have investigated this model and have achieved improved clustering performance by fine tuning the related model parameters. Yi Yang (2010) proposed clustering algorithm namely local discriminant model and global integration (LDMGI). Clustering parameters are number of nearest neighbours (k) and regularization parameter (λ). The reported parameters are k = 5 and the optimal value of λ selected from set {10-8 - 108} with step size of 102. It is observed that LDMGI clustering performance can be improved with different combination of k and λ. But no criteria exist for the selection of optimal k and λ for best clustering performance. We developed Improved-LDMGI by fine tuning the optimal value of λ in small step size of 0.25 while keeping k = 5 for all image dataset except handwritten image dataset. Significant performance improvement, on average of 7.0 percent, is observed.\",\"PeriodicalId\":251584,\"journal\":{\"name\":\"Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBCAST.2012.6177530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBCAST.2012.6177530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提高聚类性能,本文研究了一种新的图像聚类算法。我们对该模型进行了研究,并通过微调相关模型参数提高了聚类性能。易阳(2010)提出了局部判别模型和全局集成(LDMGI)聚类算法。聚类参数是最近邻数(k)和正则化参数(λ)。报告的参数为k = 5, λ的最优值选自集{10-8 - 108},步长为102。观察到k和λ的不同组合可以提高LDMGI聚类性能。但是,对于最佳聚类性能的最优k和λ的选择不存在标准。我们对除手写图像数据集外的所有图像数据集,在保持k = 5的情况下,以小步长0.25微调λ的最优值,开发了Improved-LDMGI。可以观察到显著的性能改进,平均为7.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance improvement in image clustering using local discriminant model and global integration
In this study, novel image clustering algorithm is investigated to improve the clustering performance. We have investigated this model and have achieved improved clustering performance by fine tuning the related model parameters. Yi Yang (2010) proposed clustering algorithm namely local discriminant model and global integration (LDMGI). Clustering parameters are number of nearest neighbours (k) and regularization parameter (λ). The reported parameters are k = 5 and the optimal value of λ selected from set {10-8 - 108} with step size of 102. It is observed that LDMGI clustering performance can be improved with different combination of k and λ. But no criteria exist for the selection of optimal k and λ for best clustering performance. We developed Improved-LDMGI by fine tuning the optimal value of λ in small step size of 0.25 while keeping k = 5 for all image dataset except handwritten image dataset. Significant performance improvement, on average of 7.0 percent, is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信