通过软件流重写实现程序的自动并行化

Tao Tao, D. Plaisted
{"title":"通过软件流重写实现程序的自动并行化","authors":"Tao Tao, D. Plaisted","doi":"10.1109/IPDPSW55747.2022.00094","DOIUrl":null,"url":null,"abstract":"We introduce a system for automatically paral-lelizing programs using a parallel-by-default language based on stream rewriting. Our method is general and supports all programs that can be written in a typical high-level, imperative language. The technique is fine-grained and fully automatic. It requires no programmer annotation, static analysis, runtime profiling, or cutoff schemes. The only assumption is that all function arguments in the input program can be executed in parallel. This does not affect the generality of our system since the programmers can write sequential parts in continuation-passing style. Experiments show that the runtime can scale computation-bound programs up to 16 cores without performance degradation. Future works remain to improve key aspects of the runtime and further increase the system's performance.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Parallelization of Programs via Software Stream Rewriting\",\"authors\":\"Tao Tao, D. Plaisted\",\"doi\":\"10.1109/IPDPSW55747.2022.00094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a system for automatically paral-lelizing programs using a parallel-by-default language based on stream rewriting. Our method is general and supports all programs that can be written in a typical high-level, imperative language. The technique is fine-grained and fully automatic. It requires no programmer annotation, static analysis, runtime profiling, or cutoff schemes. The only assumption is that all function arguments in the input program can be executed in parallel. This does not affect the generality of our system since the programmers can write sequential parts in continuation-passing style. Experiments show that the runtime can scale computation-bound programs up to 16 cores without performance degradation. Future works remain to improve key aspects of the runtime and further increase the system's performance.\",\"PeriodicalId\":286968,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW55747.2022.00094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了一种基于流重写的默认并行语言自动并行化程序的系统。我们的方法是通用的,支持所有可以用典型的高级命令式语言编写的程序。该技术是细粒度的,并且是全自动的。它不需要程序员注释、静态分析、运行时分析或截止方案。唯一的假设是输入程序中的所有函数参数都可以并行执行。这不会影响系统的通用性,因为程序员可以以延续传递的方式编写顺序部分。实验表明,运行时可以将计算密集型程序扩展到16核而不会降低性能。未来的工作仍然是改进运行时的关键方面,并进一步提高系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Parallelization of Programs via Software Stream Rewriting
We introduce a system for automatically paral-lelizing programs using a parallel-by-default language based on stream rewriting. Our method is general and supports all programs that can be written in a typical high-level, imperative language. The technique is fine-grained and fully automatic. It requires no programmer annotation, static analysis, runtime profiling, or cutoff schemes. The only assumption is that all function arguments in the input program can be executed in parallel. This does not affect the generality of our system since the programmers can write sequential parts in continuation-passing style. Experiments show that the runtime can scale computation-bound programs up to 16 cores without performance degradation. Future works remain to improve key aspects of the runtime and further increase the system's performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信