Artur J. Ferreira, Arlindo L. Oliveira, Mário A. T. Figueiredo
{"title":"后缀数组在内存高效Lempel-Ziv数据压缩中的应用","authors":"Artur J. Ferreira, Arlindo L. Oliveira, Mário A. T. Figueiredo","doi":"10.1109/DCC.2009.50","DOIUrl":null,"url":null,"abstract":"Much research has been devoted to optimizing algorithms of the Lempel-Ziv (LZ) 77 family, both in terms of speed and memory requirements. Binary search trees and suffix trees (ST) are data structures that have been often used for this purpose, as they allow fast searches at the expense of memory usage.In recent years, there has been interest on suffix arrays (SA), due to their simplicity and low memory requirements. One key issue is that an SA can solve the sub-string problem almost as efficiently as an ST, using less memory. This paper proposes two new SA-based algorithms for LZ encoding, which require no modifications on the decoder side. Experimental results on standard benchmarks show that our algorithms, though not faster, use 3 to 5 times less memory than the ST counterparts. Another important feature of our SA-based algorithms is that the amount of memory is independent of the text to search, thus the memory that has to be allocated can be defined a priori. These features of low and predictable memory requirements are of the utmost importance in several scenarios, such as embedded systems, where memory is at a premium and speed is not critical. Finally, we point out that the new algorithms are general, in the sense that they are adequate for applications other than LZ compression, such as text retrieval and forward/backward sub-string search.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On the Use of Suffix Arrays for Memory-Efficient Lempel-Ziv Data Compression\",\"authors\":\"Artur J. Ferreira, Arlindo L. Oliveira, Mário A. T. Figueiredo\",\"doi\":\"10.1109/DCC.2009.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much research has been devoted to optimizing algorithms of the Lempel-Ziv (LZ) 77 family, both in terms of speed and memory requirements. Binary search trees and suffix trees (ST) are data structures that have been often used for this purpose, as they allow fast searches at the expense of memory usage.In recent years, there has been interest on suffix arrays (SA), due to their simplicity and low memory requirements. One key issue is that an SA can solve the sub-string problem almost as efficiently as an ST, using less memory. This paper proposes two new SA-based algorithms for LZ encoding, which require no modifications on the decoder side. Experimental results on standard benchmarks show that our algorithms, though not faster, use 3 to 5 times less memory than the ST counterparts. Another important feature of our SA-based algorithms is that the amount of memory is independent of the text to search, thus the memory that has to be allocated can be defined a priori. These features of low and predictable memory requirements are of the utmost importance in several scenarios, such as embedded systems, where memory is at a premium and speed is not critical. Finally, we point out that the new algorithms are general, in the sense that they are adequate for applications other than LZ compression, such as text retrieval and forward/backward sub-string search.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Use of Suffix Arrays for Memory-Efficient Lempel-Ziv Data Compression
Much research has been devoted to optimizing algorithms of the Lempel-Ziv (LZ) 77 family, both in terms of speed and memory requirements. Binary search trees and suffix trees (ST) are data structures that have been often used for this purpose, as they allow fast searches at the expense of memory usage.In recent years, there has been interest on suffix arrays (SA), due to their simplicity and low memory requirements. One key issue is that an SA can solve the sub-string problem almost as efficiently as an ST, using less memory. This paper proposes two new SA-based algorithms for LZ encoding, which require no modifications on the decoder side. Experimental results on standard benchmarks show that our algorithms, though not faster, use 3 to 5 times less memory than the ST counterparts. Another important feature of our SA-based algorithms is that the amount of memory is independent of the text to search, thus the memory that has to be allocated can be defined a priori. These features of low and predictable memory requirements are of the utmost importance in several scenarios, such as embedded systems, where memory is at a premium and speed is not critical. Finally, we point out that the new algorithms are general, in the sense that they are adequate for applications other than LZ compression, such as text retrieval and forward/backward sub-string search.