超导磁储能装置在抑制电力系统低频振荡中的应用

L. Cui, Dahu Li, J. Wen, Zhenhua Jiang, Shijie Cheng
{"title":"超导磁储能装置在抑制电力系统低频振荡中的应用","authors":"L. Cui, Dahu Li, J. Wen, Zhenhua Jiang, Shijie Cheng","doi":"10.1109/DRPT.2008.4523785","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to theoretically investigate the application of superconducting magnetic energy storage (SMES) system in damping power system low-frequency electromechanical oscillations. In the paper, the SMES system is studied in the context of a single-machine infinite-bus (SMIB) power system. The mathematical model of the SMIB power system including a SMES unit is established, and the Phillips-Heffron control structure of the power system is described. Based on the principle of the complex torque coefficient (CTC) method, the expression of the complex electromagnetic torque of the entire power system including the SMES unit is derived. A nonlinear proportion-integral-differential (PID) control strategy is proposed for the SMES system to enhance the power system damping. Simulation results demonstrate that the SMES is effective in damping the power system low-frequency oscillations and the proposed nonlinear PID controller is robust to regulate the SMES unit.","PeriodicalId":240420,"journal":{"name":"2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Application of superconducting magnetic energy storage unit to damp power system low frequency oscillations\",\"authors\":\"L. Cui, Dahu Li, J. Wen, Zhenhua Jiang, Shijie Cheng\",\"doi\":\"10.1109/DRPT.2008.4523785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to theoretically investigate the application of superconducting magnetic energy storage (SMES) system in damping power system low-frequency electromechanical oscillations. In the paper, the SMES system is studied in the context of a single-machine infinite-bus (SMIB) power system. The mathematical model of the SMIB power system including a SMES unit is established, and the Phillips-Heffron control structure of the power system is described. Based on the principle of the complex torque coefficient (CTC) method, the expression of the complex electromagnetic torque of the entire power system including the SMES unit is derived. A nonlinear proportion-integral-differential (PID) control strategy is proposed for the SMES system to enhance the power system damping. Simulation results demonstrate that the SMES is effective in damping the power system low-frequency oscillations and the proposed nonlinear PID controller is robust to regulate the SMES unit.\",\"PeriodicalId\":240420,\"journal\":{\"name\":\"2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRPT.2008.4523785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRPT.2008.4523785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文的目的是从理论上研究超导磁储能系统在抑制电力系统低频机电振荡中的应用。本文在单机无限母线(SMIB)电力系统的背景下,对SMES系统进行了研究。建立了包含一个SMES单元的SMIB电力系统的数学模型,描述了电力系统的菲利普斯-赫夫龙控制结构。基于复转矩系数(CTC)法的原理,推导了包括中小企业机组在内的整个电力系统的复电磁转矩表达式。提出了一种用于中小企业系统的非线性比例-积分-微分(PID)控制策略,以增强电力系统的阻尼。仿真结果表明,该控制器能有效地抑制电力系统的低频振荡,且所提出的非线性PID控制器具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of superconducting magnetic energy storage unit to damp power system low frequency oscillations
The objective of this paper is to theoretically investigate the application of superconducting magnetic energy storage (SMES) system in damping power system low-frequency electromechanical oscillations. In the paper, the SMES system is studied in the context of a single-machine infinite-bus (SMIB) power system. The mathematical model of the SMIB power system including a SMES unit is established, and the Phillips-Heffron control structure of the power system is described. Based on the principle of the complex torque coefficient (CTC) method, the expression of the complex electromagnetic torque of the entire power system including the SMES unit is derived. A nonlinear proportion-integral-differential (PID) control strategy is proposed for the SMES system to enhance the power system damping. Simulation results demonstrate that the SMES is effective in damping the power system low-frequency oscillations and the proposed nonlinear PID controller is robust to regulate the SMES unit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信