彩色人脸识别的扩展PCA和LDA

Qiong Kang, Lingling Peng
{"title":"彩色人脸识别的扩展PCA和LDA","authors":"Qiong Kang, Lingling Peng","doi":"10.1109/ISIC.2012.6449777","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for color face recognition. We extract the first, second and third channels of each color image and use PCA and LDA to get a score of each channel, then we use a combine scheme to attain a final score and use this final score to classify test samples. In order to check the performance of our method, we conduct experiments on Georgia Tech (GT) color face database, at the same time, we compare our method with PCA and LDA, and experiment results show that our methods take better performance.","PeriodicalId":393653,"journal":{"name":"2012 International Conference on Information Security and Intelligent Control","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An extended PCA and LDA for color face recognition\",\"authors\":\"Qiong Kang, Lingling Peng\",\"doi\":\"10.1109/ISIC.2012.6449777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method for color face recognition. We extract the first, second and third channels of each color image and use PCA and LDA to get a score of each channel, then we use a combine scheme to attain a final score and use this final score to classify test samples. In order to check the performance of our method, we conduct experiments on Georgia Tech (GT) color face database, at the same time, we compare our method with PCA and LDA, and experiment results show that our methods take better performance.\",\"PeriodicalId\":393653,\"journal\":{\"name\":\"2012 International Conference on Information Security and Intelligent Control\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Security and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2012.6449777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Security and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6449777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种新的彩色人脸识别方法。我们提取每个彩色图像的第一、第二和第三个通道,并使用PCA和LDA得到每个通道的分数,然后使用组合方案得到最终分数,并使用该最终分数对测试样本进行分类。为了验证我们的方法的性能,我们在Georgia Tech (GT)的彩色人脸数据库上进行了实验,同时将我们的方法与PCA和LDA进行了比较,实验结果表明我们的方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extended PCA and LDA for color face recognition
In this paper, we propose a new method for color face recognition. We extract the first, second and third channels of each color image and use PCA and LDA to get a score of each channel, then we use a combine scheme to attain a final score and use this final score to classify test samples. In order to check the performance of our method, we conduct experiments on Georgia Tech (GT) color face database, at the same time, we compare our method with PCA and LDA, and experiment results show that our methods take better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信