基于生成对抗网络的综合入侵警报生成

Christopher Sweet, Stephen Moskal, S. Yang
{"title":"基于生成对抗网络的综合入侵警报生成","authors":"Christopher Sweet, Stephen Moskal, S. Yang","doi":"10.1109/MILCOM47813.2019.9020850","DOIUrl":null,"url":null,"abstract":"Cyber Intrusion alerts are commonly collected by corporations to analyze network traffic and glean information about attacks perpetrated against the network. However, datasets of true malignant alerts are rare and generally only show one potential attack scenario out of many possible ones. Furthermore, it is difficult to expand the analysis of these alerts through artificial means due to the complexity of feature dependencies within an alert and lack of rare yet critical samples. This work proposes the use of a Mutual Information constrained Generative Adversarial Network as a means to synthesize new alerts from historical data. Histogram Intersection and Conditional Entropy are used to show the performance of this model as well as it's ability to learn intricate feature dependencies. The proposed models are able to capture a much wider domain of alert feature values than standard Generative Adversarial Networks. Finally, we show that when looking at alerts from the perspective of attack stages, the proposed models are able to capture critical attacker behavior providing direct semantic meaning to generated samples.","PeriodicalId":371812,"journal":{"name":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthetic Intrusion Alert Generation through Generative Adversarial Networks\",\"authors\":\"Christopher Sweet, Stephen Moskal, S. Yang\",\"doi\":\"10.1109/MILCOM47813.2019.9020850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber Intrusion alerts are commonly collected by corporations to analyze network traffic and glean information about attacks perpetrated against the network. However, datasets of true malignant alerts are rare and generally only show one potential attack scenario out of many possible ones. Furthermore, it is difficult to expand the analysis of these alerts through artificial means due to the complexity of feature dependencies within an alert and lack of rare yet critical samples. This work proposes the use of a Mutual Information constrained Generative Adversarial Network as a means to synthesize new alerts from historical data. Histogram Intersection and Conditional Entropy are used to show the performance of this model as well as it's ability to learn intricate feature dependencies. The proposed models are able to capture a much wider domain of alert feature values than standard Generative Adversarial Networks. Finally, we show that when looking at alerts from the perspective of attack stages, the proposed models are able to capture critical attacker behavior providing direct semantic meaning to generated samples.\",\"PeriodicalId\":371812,\"journal\":{\"name\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM47813.2019.9020850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM47813.2019.9020850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网络入侵警报通常由企业收集,用于分析网络流量和收集针对网络的攻击信息。然而,真正的恶性警报的数据集很少,通常只显示许多可能的攻击场景中的一种。此外,由于警报中特征依赖关系的复杂性和缺乏罕见但关键的样本,很难通过人工手段扩展这些警报的分析。这项工作提出使用互信息约束生成对抗网络作为从历史数据合成新警报的手段。直方图交集和条件熵被用来展示该模型的性能以及它学习复杂特征依赖关系的能力。所提出的模型能够捕获比标准生成对抗网络更广泛的警报特征值。最后,我们表明,当从攻击阶段的角度看待警报时,所提出的模型能够捕获关键攻击者行为,为生成的样本提供直接的语义含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Intrusion Alert Generation through Generative Adversarial Networks
Cyber Intrusion alerts are commonly collected by corporations to analyze network traffic and glean information about attacks perpetrated against the network. However, datasets of true malignant alerts are rare and generally only show one potential attack scenario out of many possible ones. Furthermore, it is difficult to expand the analysis of these alerts through artificial means due to the complexity of feature dependencies within an alert and lack of rare yet critical samples. This work proposes the use of a Mutual Information constrained Generative Adversarial Network as a means to synthesize new alerts from historical data. Histogram Intersection and Conditional Entropy are used to show the performance of this model as well as it's ability to learn intricate feature dependencies. The proposed models are able to capture a much wider domain of alert feature values than standard Generative Adversarial Networks. Finally, we show that when looking at alerts from the perspective of attack stages, the proposed models are able to capture critical attacker behavior providing direct semantic meaning to generated samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信