基于核匹配子空间检测器的高光谱目标检测

H. Kwon, N. Nasrabadi
{"title":"基于核匹配子空间检测器的高光谱目标检测","authors":"H. Kwon, N. Nasrabadi","doi":"10.1109/ICIP.2004.1421826","DOIUrl":null,"url":null,"abstract":"In this paper we present a nonlinear realization of a subspace signal detection approach based on the generalized likelihood ratio test (GLRT) - so called matched subspace detectors (MSD). The linear model for MSD is first extended to a high, possibly infinite, dimensional feature space and then the corresponding nonlinear GLRT expression is obtained. In order to address the intractability of the GLRT in the nonlinear feature space we kernelize the nonlinear GLRT using kernel eigenvector representations as well as the kernel trick where dot products in the nonlinear feature space are implicitly computed by kernels. The proposed kernel-based nonlinear detector, so called kernel matched subspace detector (KMSD), is applied to a given hyperspectral imagery - HYDICE (hyperspectral digital imagery collection experiment) images - to detect targets of interest. KMSD showed superior detection performance over MSD for the HYDICE images tested in this paper.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hyperspectral target detection using kernel matched subspace detector\",\"authors\":\"H. Kwon, N. Nasrabadi\",\"doi\":\"10.1109/ICIP.2004.1421826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a nonlinear realization of a subspace signal detection approach based on the generalized likelihood ratio test (GLRT) - so called matched subspace detectors (MSD). The linear model for MSD is first extended to a high, possibly infinite, dimensional feature space and then the corresponding nonlinear GLRT expression is obtained. In order to address the intractability of the GLRT in the nonlinear feature space we kernelize the nonlinear GLRT using kernel eigenvector representations as well as the kernel trick where dot products in the nonlinear feature space are implicitly computed by kernels. The proposed kernel-based nonlinear detector, so called kernel matched subspace detector (KMSD), is applied to a given hyperspectral imagery - HYDICE (hyperspectral digital imagery collection experiment) images - to detect targets of interest. KMSD showed superior detection performance over MSD for the HYDICE images tested in this paper.\",\"PeriodicalId\":184798,\"journal\":{\"name\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2004.1421826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1421826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于广义似然比检验(GLRT)的子空间信号检测方法的非线性实现——即匹配子空间检测器(MSD)。首先将MSD的线性模型扩展到一个可能无限的高维特征空间,然后得到相应的非线性GLRT表达式。为了解决非线性GLRT在非线性特征空间中的棘手问题,我们使用核特征向量表示和核技巧对非线性GLRT进行核化,其中非线性特征空间中的点积由核隐式计算。提出了一种基于核匹配子空间检测器(KMSD)的非线性检测器,并将其应用于给定的高光谱图像HYDICE(高光谱数字图像采集实验)图像中,以检测感兴趣的目标。对于本文测试的HYDICE图像,KMSD的检测性能优于MSD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral target detection using kernel matched subspace detector
In this paper we present a nonlinear realization of a subspace signal detection approach based on the generalized likelihood ratio test (GLRT) - so called matched subspace detectors (MSD). The linear model for MSD is first extended to a high, possibly infinite, dimensional feature space and then the corresponding nonlinear GLRT expression is obtained. In order to address the intractability of the GLRT in the nonlinear feature space we kernelize the nonlinear GLRT using kernel eigenvector representations as well as the kernel trick where dot products in the nonlinear feature space are implicitly computed by kernels. The proposed kernel-based nonlinear detector, so called kernel matched subspace detector (KMSD), is applied to a given hyperspectral imagery - HYDICE (hyperspectral digital imagery collection experiment) images - to detect targets of interest. KMSD showed superior detection performance over MSD for the HYDICE images tested in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信