网络类型识别的多标签方法

Vedrana Vidulin, M. Luštrek, M. Gams
{"title":"网络类型识别的多标签方法","authors":"Vedrana Vidulin, M. Luštrek, M. Gams","doi":"10.21248/jlcl.24.2009.115","DOIUrl":null,"url":null,"abstract":"A web page is a complex document which can share conventions of several genres, or contain several parts, each belonging to a different genre. To properly address the genre interplay, a recent proposal in automatic web genre identification is multi-label classification. The dominant approach to such classification is to transform one multi-label machine learning problem into several sub-problems of learning binary single-label classifiers, one for each genre. In this paper we explore multi-class transformation, where each combination of genres is labeled with a single distinct label. This approach is then compared to the binary approach to determine which one better captures the multi-label aspect of web genres. Experimental results show that both of the approaches failed to properly address multi-genre web pages. Obtained differences were a result of the variations in the recognition of one-genre web pages.","PeriodicalId":402489,"journal":{"name":"J. Lang. Technol. Comput. Linguistics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Multi-Label Approaches to Web Genre Identification\",\"authors\":\"Vedrana Vidulin, M. Luštrek, M. Gams\",\"doi\":\"10.21248/jlcl.24.2009.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A web page is a complex document which can share conventions of several genres, or contain several parts, each belonging to a different genre. To properly address the genre interplay, a recent proposal in automatic web genre identification is multi-label classification. The dominant approach to such classification is to transform one multi-label machine learning problem into several sub-problems of learning binary single-label classifiers, one for each genre. In this paper we explore multi-class transformation, where each combination of genres is labeled with a single distinct label. This approach is then compared to the binary approach to determine which one better captures the multi-label aspect of web genres. Experimental results show that both of the approaches failed to properly address multi-genre web pages. Obtained differences were a result of the variations in the recognition of one-genre web pages.\",\"PeriodicalId\":402489,\"journal\":{\"name\":\"J. Lang. Technol. Comput. Linguistics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Lang. Technol. Comput. Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.24.2009.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Lang. Technol. Comput. Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.24.2009.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

一个网页是一个复杂的文档,它可以共享几个类型的约定,或者包含几个部分,每个部分属于一个不同的类型。为了正确处理类型间的相互作用,最近在自动网络类型识别中提出了多标签分类。这种分类的主要方法是将一个多标签机器学习问题转化为学习二元单标签分类器的几个子问题,每个子问题对应一个分类器。在本文中,我们探索了多类转换,其中每个类型的组合都被标记为单个不同的标签。然后将此方法与二元方法进行比较,以确定哪一种方法更能抓住网页类型的多标签方面。实验结果表明,这两种方法都不能很好地处理多类型网页。所获得的差异是由于对单一类型网页的识别差异造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Label Approaches to Web Genre Identification
A web page is a complex document which can share conventions of several genres, or contain several parts, each belonging to a different genre. To properly address the genre interplay, a recent proposal in automatic web genre identification is multi-label classification. The dominant approach to such classification is to transform one multi-label machine learning problem into several sub-problems of learning binary single-label classifiers, one for each genre. In this paper we explore multi-class transformation, where each combination of genres is labeled with a single distinct label. This approach is then compared to the binary approach to determine which one better captures the multi-label aspect of web genres. Experimental results show that both of the approaches failed to properly address multi-genre web pages. Obtained differences were a result of the variations in the recognition of one-genre web pages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信