多轨关联与融合

A. K. Roy, S. Koteswara Rao
{"title":"多轨关联与融合","authors":"A. K. Roy, S. Koteswara Rao","doi":"10.1109/ICCSP.2011.5739285","DOIUrl":null,"url":null,"abstract":"This paper emphasizes nearest neighbourhood approach for data association, which is carried out after target motion analysis (TMA) solution stabilizes. Parameterized Modified Gain Extended Kalman Filter (PMGEKF) has been used to carry out TMA. Having done, association, fusion with state vectors is carried out.","PeriodicalId":408736,"journal":{"name":"2011 International Conference on Communications and Signal Processing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-track association and fusion\",\"authors\":\"A. K. Roy, S. Koteswara Rao\",\"doi\":\"10.1109/ICCSP.2011.5739285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper emphasizes nearest neighbourhood approach for data association, which is carried out after target motion analysis (TMA) solution stabilizes. Parameterized Modified Gain Extended Kalman Filter (PMGEKF) has been used to carry out TMA. Having done, association, fusion with state vectors is carried out.\",\"PeriodicalId\":408736,\"journal\":{\"name\":\"2011 International Conference on Communications and Signal Processing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2011.5739285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2011.5739285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文强调在目标运动分析(TMA)解稳定后进行数据关联的最近邻方法。采用参数化修正增益扩展卡尔曼滤波器(PMGEKF)进行TMA。完成后,对状态向量进行关联、融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-track association and fusion
This paper emphasizes nearest neighbourhood approach for data association, which is carried out after target motion analysis (TMA) solution stabilizes. Parameterized Modified Gain Extended Kalman Filter (PMGEKF) has been used to carry out TMA. Having done, association, fusion with state vectors is carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信