使用蚱蜢优化算法和聚类算法为模糊分类器设置规则库

R. Ostapenko, I. Hodashinsky
{"title":"使用蚱蜢优化算法和聚类算法为模糊分类器设置规则库","authors":"R. Ostapenko, I. Hodashinsky","doi":"10.21293/1818-0442-2022-25-2-31-36","DOIUrl":null,"url":null,"abstract":"The article presents a description of a hybrid algorithm for generating fuzzy rules for a fuzzy classifier using grasshopper optimization algorithm and the K-means data clustering algorithm. The performance of clustering was evaluated by three fitness functions: total variance, Davis–Bouldin index, and Calinski–Harabasz index. Triangular and Gaussian membership functions have been investigated. The efficiency of the generated fuzzy rule bases has been tested on real datasets. The best combination is to use the total variance as the fitness function and the Gaussian function as the membership function.","PeriodicalId":273068,"journal":{"name":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Setting a rule base for a fuzzy classifier using the grasshopper optimization algorithm and the clustering algorithm\",\"authors\":\"R. Ostapenko, I. Hodashinsky\",\"doi\":\"10.21293/1818-0442-2022-25-2-31-36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents a description of a hybrid algorithm for generating fuzzy rules for a fuzzy classifier using grasshopper optimization algorithm and the K-means data clustering algorithm. The performance of clustering was evaluated by three fitness functions: total variance, Davis–Bouldin index, and Calinski–Harabasz index. Triangular and Gaussian membership functions have been investigated. The efficiency of the generated fuzzy rule bases has been tested on real datasets. The best combination is to use the total variance as the fitness function and the Gaussian function as the membership function.\",\"PeriodicalId\":273068,\"journal\":{\"name\":\"Proceedings of Tomsk State University of Control Systems and Radioelectronics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tomsk State University of Control Systems and Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21293/1818-0442-2022-25-2-31-36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21293/1818-0442-2022-25-2-31-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种利用蚱蜢优化算法和k均值数据聚类算法为模糊分类器生成模糊规则的混合算法。通过总方差、Davis-Bouldin指数和Calinski-Harabasz指数三个适应度函数来评价聚类的性能。研究了三角和高斯隶属函数。在实际数据集上测试了所生成的模糊规则库的有效性。最好的组合是用总方差作为适应度函数,高斯函数作为隶属度函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Setting a rule base for a fuzzy classifier using the grasshopper optimization algorithm and the clustering algorithm
The article presents a description of a hybrid algorithm for generating fuzzy rules for a fuzzy classifier using grasshopper optimization algorithm and the K-means data clustering algorithm. The performance of clustering was evaluated by three fitness functions: total variance, Davis–Bouldin index, and Calinski–Harabasz index. Triangular and Gaussian membership functions have been investigated. The efficiency of the generated fuzzy rule bases has been tested on real datasets. The best combination is to use the total variance as the fitness function and the Gaussian function as the membership function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信