利用VMJ光伏电池的高强度激光功率光束系统的光频优化

D. Raible, D. Dinca, T. Nayfeh
{"title":"利用VMJ光伏电池的高强度激光功率光束系统的光频优化","authors":"D. Raible, D. Dinca, T. Nayfeh","doi":"10.1109/ICSOS.2011.5783675","DOIUrl":null,"url":null,"abstract":"An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical ‘refueling’ of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/cm2 at an optical-to-electrical conversion efficiency of 24 %. These results are very promising and scalable, as a potential 1.0 m2 HILPB receiver of similar construction would be able to generate 136 kW of electrical power under similar conditions.","PeriodicalId":107082,"journal":{"name":"2011 International Conference on Space Optical Systems and Applications (ICSOS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Optical frequency optimization of a high intensity laser power beaming system utilizing VMJ photovoltaic cells\",\"authors\":\"D. Raible, D. Dinca, T. Nayfeh\",\"doi\":\"10.1109/ICSOS.2011.5783675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical ‘refueling’ of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/cm2 at an optical-to-electrical conversion efficiency of 24 %. These results are very promising and scalable, as a potential 1.0 m2 HILPB receiver of similar construction would be able to generate 136 kW of electrical power under similar conditions.\",\"PeriodicalId\":107082,\"journal\":{\"name\":\"2011 International Conference on Space Optical Systems and Applications (ICSOS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Space Optical Systems and Applications (ICSOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSOS.2011.5783675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Space Optical Systems and Applications (ICSOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSOS.2011.5783675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

已经开发出一种有效形式的无线电力传输(WPT),可以延长任务持续时间,增加覆盖范围并增加空间和地面应用的能力,这些应用可能受益于光传输电能。高强度激光功率光束(HILPB)系统能够远程光学“加油”电动平台,如微型无人机(MUAV)、飞艇、机器人探索任务和航天器平台。为了进一步推进HILPB技术,本研究的重点是确定使用垂直多结(VMJ)光伏电池的HILPB接收器的最佳激光波长。为了在连续高强度下最大限度地提高转换效率,从而提高HILPB系统的输出功率密度,必须对激光系统进行频率优化。NASA格伦研究中心(GRC)对该设备进行的初始光谱表征表明了光电转换效率峰值的大致范围,但这些数据集代表了较低照明水平下的瞬态条件。将这些结果扩展到高水平的稳态照明,并注意到可用的商用现货半导体激光源和大气传输限制的兼容性是本文的主要焦点。本文介绍并讨论了利用大功率连续波半导体激光器在四种不同工作频率下的光电VMJ电池带隙附近的硬件实验结果。此外,迄今为止,使用单个光伏VMJ电池实现了最高的接收器功率密度,该电池提供了13.6 W/cm2的异常高的电输出,光电转换效率为24%。这些结果是非常有前途的和可扩展的,因为在类似的条件下,一个潜在的1.0 m2的HILPB接收器将能够产生136千瓦的电力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical frequency optimization of a high intensity laser power beaming system utilizing VMJ photovoltaic cells
An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical ‘refueling’ of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/cm2 at an optical-to-electrical conversion efficiency of 24 %. These results are very promising and scalable, as a potential 1.0 m2 HILPB receiver of similar construction would be able to generate 136 kW of electrical power under similar conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信