进行中的工作:工业分布式自动化系统的实时通信建模

Friederike Bruns, W. Nebel, Jörg Walter, Kim Grüttner
{"title":"进行中的工作:工业分布式自动化系统的实时通信建模","authors":"Friederike Bruns, W. Nebel, Jörg Walter, Kim Grüttner","doi":"10.1109/WFCS47810.2020.9114413","DOIUrl":null,"url":null,"abstract":"Real-time communication of distributed automation systems come with many challenges as there is no common time basis. Often a periodic execution of applications is considered which leads to time phenomena like drifts or jitter. Thus, this type of communication requires observance and enforcement of real-time properties to guarantee reliability of distributed systems. New industrial technologies like Time-Sensitive Networking (TSN) and the IEC 61499 standard provide support to conquer upcoming challenges. Therefore, we are using these jointly with contract-based design to propose a design methodology for verification of real-time communication in IEC 61499 systems. We implemented a simulation-based verification environment and performed postmortem trace-based verification against timing specifications. The evaluation confirms the possibility of integrating our proposed representation for non-local communication into IEC 61499 for analyzing time behavior of applications.","PeriodicalId":272431,"journal":{"name":"2020 16th IEEE International Conference on Factory Communication Systems (WFCS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Work-in-Progress: Modeling of real-time communication for industrial distributed automation systems\",\"authors\":\"Friederike Bruns, W. Nebel, Jörg Walter, Kim Grüttner\",\"doi\":\"10.1109/WFCS47810.2020.9114413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time communication of distributed automation systems come with many challenges as there is no common time basis. Often a periodic execution of applications is considered which leads to time phenomena like drifts or jitter. Thus, this type of communication requires observance and enforcement of real-time properties to guarantee reliability of distributed systems. New industrial technologies like Time-Sensitive Networking (TSN) and the IEC 61499 standard provide support to conquer upcoming challenges. Therefore, we are using these jointly with contract-based design to propose a design methodology for verification of real-time communication in IEC 61499 systems. We implemented a simulation-based verification environment and performed postmortem trace-based verification against timing specifications. The evaluation confirms the possibility of integrating our proposed representation for non-local communication into IEC 61499 for analyzing time behavior of applications.\",\"PeriodicalId\":272431,\"journal\":{\"name\":\"2020 16th IEEE International Conference on Factory Communication Systems (WFCS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 16th IEEE International Conference on Factory Communication Systems (WFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WFCS47810.2020.9114413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th IEEE International Conference on Factory Communication Systems (WFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS47810.2020.9114413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于没有通用的时间基础,分布式自动化系统的实时通信面临许多挑战。应用程序的周期性执行通常会导致时间现象,如漂移或抖动。因此,这种类型的通信需要遵守和实施实时属性,以保证分布式系统的可靠性。新的工业技术,如时间敏感网络(TSN)和IEC 61499标准,为克服即将到来的挑战提供了支持。因此,我们将这些与基于契约的设计结合起来,提出了一种用于验证IEC 61499系统中实时通信的设计方法。我们实现了一个基于仿真的验证环境,并根据时间规范执行了基于事后跟踪的验证。评估证实了将我们提出的非本地通信表示集成到IEC 61499中以分析应用程序的时间行为的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: Modeling of real-time communication for industrial distributed automation systems
Real-time communication of distributed automation systems come with many challenges as there is no common time basis. Often a periodic execution of applications is considered which leads to time phenomena like drifts or jitter. Thus, this type of communication requires observance and enforcement of real-time properties to guarantee reliability of distributed systems. New industrial technologies like Time-Sensitive Networking (TSN) and the IEC 61499 standard provide support to conquer upcoming challenges. Therefore, we are using these jointly with contract-based design to propose a design methodology for verification of real-time communication in IEC 61499 systems. We implemented a simulation-based verification environment and performed postmortem trace-based verification against timing specifications. The evaluation confirms the possibility of integrating our proposed representation for non-local communication into IEC 61499 for analyzing time behavior of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信