波动方程可观测性的几何和概率结果

E. Humbert, Y. Privat, E. Trélat
{"title":"波动方程可观测性的几何和概率结果","authors":"E. Humbert, Y. Privat, E. Trélat","doi":"10.5802/jep.186","DOIUrl":null,"url":null,"abstract":"Given any measurable subset $\\omega$ of a closed Riemannian manifold $(M,g)$ and given any $T>0$, we define $\\ell^T(\\omega)\\in[0,1]$ as the smallest average time over $[0,T]$ spent by all geodesic rays in $\\omega$. This quantity appears naturally when studying observability properties for the wave equation on $M$, with $\\omega$ as an observation subset: the condition $\\ell^T(\\omega)>0$ is the well known \\emph{Geometric Control Condition}. \n \nIn this article we establish two properties of the functional $\\ell^T$, one is geometric and the other is probabilistic. \n \nThe first geometric property is on the maximal discrepancy of $\\ell^T$ when taking the closure. We may have $\\ell^T(\\mathring{\\omega})<\\ell^T(\\overline\\omega)$ whenever there exist rays grazing $\\omega$ and the discrepancy between both quantities may be equal to $1$ for some subsets $\\omega$. We prove that, if the metric $g$ is $C^2$ and if $\\omega$ satisfies a slight regularity assumption, then $\\ell^T(\\overline\\omega) \\leq \\frac{1}{2} \\left( \\ell^T(\\mathring{\\omega}) + 1 \\right)$. \nWe also show that our assumptions are essentially sharp; in particular, surprisingly the result is wrong if the metric $g$ is not $C^2$. \nAs a consequence, if $\\omega$ is regular enough and if $\\ell^T(\\overline\\omega)>1/2$ then the Geometric Control Condition is satisfied and thus the wave equation is observable on $\\omega$ in time $T$. \n \nThe second property is of probabilistic nature. We take $M=\\mathbb{T}^2$, the flat two-dimensional torus, and we consider a regular grid on it, a regular checkerboard made of $n^2$ square white cells. We construct random subsets $\\omega_\\varepsilon^n$ by darkening each cell in this grid with a probability $\\varepsilon$. We prove that the random law $\\ell^T(\\omega_\\varepsilon^n)$ converges in probability to $\\varepsilon$ as $n\\rightarrow+\\infty$. \nAs a consequence, if $n$ is large enough then the Geometric Control Condition is satisfied almost surely and thus the wave equation is observable on $\\omega_\\varepsilon^n$ in time $T$.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric and probabilistic results for the observability of the wave equation\",\"authors\":\"E. Humbert, Y. Privat, E. Trélat\",\"doi\":\"10.5802/jep.186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given any measurable subset $\\\\omega$ of a closed Riemannian manifold $(M,g)$ and given any $T>0$, we define $\\\\ell^T(\\\\omega)\\\\in[0,1]$ as the smallest average time over $[0,T]$ spent by all geodesic rays in $\\\\omega$. This quantity appears naturally when studying observability properties for the wave equation on $M$, with $\\\\omega$ as an observation subset: the condition $\\\\ell^T(\\\\omega)>0$ is the well known \\\\emph{Geometric Control Condition}. \\n \\nIn this article we establish two properties of the functional $\\\\ell^T$, one is geometric and the other is probabilistic. \\n \\nThe first geometric property is on the maximal discrepancy of $\\\\ell^T$ when taking the closure. We may have $\\\\ell^T(\\\\mathring{\\\\omega})<\\\\ell^T(\\\\overline\\\\omega)$ whenever there exist rays grazing $\\\\omega$ and the discrepancy between both quantities may be equal to $1$ for some subsets $\\\\omega$. We prove that, if the metric $g$ is $C^2$ and if $\\\\omega$ satisfies a slight regularity assumption, then $\\\\ell^T(\\\\overline\\\\omega) \\\\leq \\\\frac{1}{2} \\\\left( \\\\ell^T(\\\\mathring{\\\\omega}) + 1 \\\\right)$. \\nWe also show that our assumptions are essentially sharp; in particular, surprisingly the result is wrong if the metric $g$ is not $C^2$. \\nAs a consequence, if $\\\\omega$ is regular enough and if $\\\\ell^T(\\\\overline\\\\omega)>1/2$ then the Geometric Control Condition is satisfied and thus the wave equation is observable on $\\\\omega$ in time $T$. \\n \\nThe second property is of probabilistic nature. We take $M=\\\\mathbb{T}^2$, the flat two-dimensional torus, and we consider a regular grid on it, a regular checkerboard made of $n^2$ square white cells. We construct random subsets $\\\\omega_\\\\varepsilon^n$ by darkening each cell in this grid with a probability $\\\\varepsilon$. We prove that the random law $\\\\ell^T(\\\\omega_\\\\varepsilon^n)$ converges in probability to $\\\\varepsilon$ as $n\\\\rightarrow+\\\\infty$. \\nAs a consequence, if $n$ is large enough then the Geometric Control Condition is satisfied almost surely and thus the wave equation is observable on $\\\\omega_\\\\varepsilon^n$ in time $T$.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定任意可测量子集 $\omega$ 一个封闭黎曼流形 $(M,g)$ 给定任何 $T>0$,我们定义 $\ell^T(\omega)\in[0,1]$ 作为最小的平均时间 $[0,T]$ 被所有测地线射线所消耗 $\omega$. 这个量在研究波方程的可观测性时自然出现 $M$, with $\omega$ 作为观察子集:条件 $\ell^T(\omega)>0$ 是众所周知的吗? \emph{几何控制条件}. 本文建立了泛函的两个性质 $\ell^T$一个是几何的,另一个是概率的。第一个几何性质是关于的最大差值 $\ell^T$ 取闭包时。我们可能有 $\ell^T(\mathring{\omega})1/2$ 则满足几何控制条件,因此波动方程是可见的 $\omega$ 及时 $T$. 第二个性质是概率性质。我们取 $M=\mathbb{T}^2$平面的二维环面,我们考虑一个规则的网格,一个规则的棋盘,由 $n^2$ 方形白细胞。我们构造随机子集 $\omega_\varepsilon^n$ 通过将网格中的每个单元格变暗来确定概率 $\varepsilon$. 我们证明了随机律 $\ell^T(\omega_\varepsilon^n)$ 在概率上收敛于 $\varepsilon$ as $n\rightarrow+\infty$. 因此,如果 $n$ 足够大,则几乎可以肯定地满足几何控制条件,因此波动方程在 $\omega_\varepsilon^n$ 及时 $T$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric and probabilistic results for the observability of the wave equation
Given any measurable subset $\omega$ of a closed Riemannian manifold $(M,g)$ and given any $T>0$, we define $\ell^T(\omega)\in[0,1]$ as the smallest average time over $[0,T]$ spent by all geodesic rays in $\omega$. This quantity appears naturally when studying observability properties for the wave equation on $M$, with $\omega$ as an observation subset: the condition $\ell^T(\omega)>0$ is the well known \emph{Geometric Control Condition}. In this article we establish two properties of the functional $\ell^T$, one is geometric and the other is probabilistic. The first geometric property is on the maximal discrepancy of $\ell^T$ when taking the closure. We may have $\ell^T(\mathring{\omega})<\ell^T(\overline\omega)$ whenever there exist rays grazing $\omega$ and the discrepancy between both quantities may be equal to $1$ for some subsets $\omega$. We prove that, if the metric $g$ is $C^2$ and if $\omega$ satisfies a slight regularity assumption, then $\ell^T(\overline\omega) \leq \frac{1}{2} \left( \ell^T(\mathring{\omega}) + 1 \right)$. We also show that our assumptions are essentially sharp; in particular, surprisingly the result is wrong if the metric $g$ is not $C^2$. As a consequence, if $\omega$ is regular enough and if $\ell^T(\overline\omega)>1/2$ then the Geometric Control Condition is satisfied and thus the wave equation is observable on $\omega$ in time $T$. The second property is of probabilistic nature. We take $M=\mathbb{T}^2$, the flat two-dimensional torus, and we consider a regular grid on it, a regular checkerboard made of $n^2$ square white cells. We construct random subsets $\omega_\varepsilon^n$ by darkening each cell in this grid with a probability $\varepsilon$. We prove that the random law $\ell^T(\omega_\varepsilon^n)$ converges in probability to $\varepsilon$ as $n\rightarrow+\infty$. As a consequence, if $n$ is large enough then the Geometric Control Condition is satisfied almost surely and thus the wave equation is observable on $\omega_\varepsilon^n$ in time $T$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信