用于有损压缩、分箱和带边信息编码的低密度结构

E. Martinian, M. Wainwright
{"title":"用于有损压缩、分箱和带边信息编码的低密度结构","authors":"E. Martinian, M. Wainwright","doi":"10.1109/ITW.2006.1633825","DOIUrl":null,"url":null,"abstract":"In this extended abstract, we provide a high-level overview of some of our recent work [10], [11], [9] on low-density graphical codes for various communication problems including lossy compression, binning, and coding with side information. Sparse graphical codes, particularly low-density parity check (LDPC) codes, are widely used and well understood in application to channel coding problems [16]. On the other hand, for other communication problems—especially those involving aspects of both channel and source coding—there remain various open questions associated with using low-density code constructions. Examples of such problems include (a) lossy source coding (data compression); (b) source coding with side information (the Wyner-Ziv problem [19]), and (c) channel coding with side information (the Gelfand-Pinsker problem [7]). Our work tackles these problems using sparse graphical constructions that are based on a combination of LDPC codes, and their dual versions, namely low-density generator matrix (LDGM) codes.","PeriodicalId":293144,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-density constructions for lossy compression, binning, and coding with side information\",\"authors\":\"E. Martinian, M. Wainwright\",\"doi\":\"10.1109/ITW.2006.1633825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this extended abstract, we provide a high-level overview of some of our recent work [10], [11], [9] on low-density graphical codes for various communication problems including lossy compression, binning, and coding with side information. Sparse graphical codes, particularly low-density parity check (LDPC) codes, are widely used and well understood in application to channel coding problems [16]. On the other hand, for other communication problems—especially those involving aspects of both channel and source coding—there remain various open questions associated with using low-density code constructions. Examples of such problems include (a) lossy source coding (data compression); (b) source coding with side information (the Wyner-Ziv problem [19]), and (c) channel coding with side information (the Gelfand-Pinsker problem [7]). Our work tackles these problems using sparse graphical constructions that are based on a combination of LDPC codes, and their dual versions, namely low-density generator matrix (LDGM) codes.\",\"PeriodicalId\":293144,\"journal\":{\"name\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2006.1633825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2006.1633825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这篇扩展的摘要中,我们对我们最近的一些工作[10],[11],[9]提供了一个高层次的概述,这些工作涉及各种通信问题的低密度图形码,包括有损压缩,分箱和带有侧信息的编码。稀疏图形码,特别是低密度奇偶校验(LDPC)码,在信道编码问题中得到了广泛的应用和很好的理解[16]。另一方面,对于其他通信问题,特别是那些涉及信道和源代码方面的问题,仍然存在与使用低密度代码结构相关的各种悬而未决的问题。这类问题的例子包括:(a)有损源编码(数据压缩);(b)带边信息的源编码(Wyner-Ziv问题[19]),(c)带边信息的信道编码(Gelfand-Pinsker问题[7])。我们的工作使用基于LDPC码及其双版本(即低密度生成器矩阵(LDGM)码)组合的稀疏图形结构来解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-density constructions for lossy compression, binning, and coding with side information
In this extended abstract, we provide a high-level overview of some of our recent work [10], [11], [9] on low-density graphical codes for various communication problems including lossy compression, binning, and coding with side information. Sparse graphical codes, particularly low-density parity check (LDPC) codes, are widely used and well understood in application to channel coding problems [16]. On the other hand, for other communication problems—especially those involving aspects of both channel and source coding—there remain various open questions associated with using low-density code constructions. Examples of such problems include (a) lossy source coding (data compression); (b) source coding with side information (the Wyner-Ziv problem [19]), and (c) channel coding with side information (the Gelfand-Pinsker problem [7]). Our work tackles these problems using sparse graphical constructions that are based on a combination of LDPC codes, and their dual versions, namely low-density generator matrix (LDGM) codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信