一种基于小波的多传感器数据融合算法

Lijun Xu, Jian Qiu Zhane, Yong Yan
{"title":"一种基于小波的多传感器数据融合算法","authors":"Lijun Xu, Jian Qiu Zhane, Yong Yan","doi":"10.1109/IMTC.2003.1208199","DOIUrl":null,"url":null,"abstract":"Absfrnd - This paper presents a wavelef transform-based data fusion algorithm for multi-sensor systems. Wfh fhis algorithm fhe optimum estimafe of a measurand can be obtained in terms of Minimum Mean Square Error. The variance of the optimum esfimate is not only smaller than that of each observalion sequence but also smaller than the arifhmefic average estimate. To implement this algorithm, fhe variance of each observalion sequence is estimafed using wavelef tronsform and fhe optimum weighfing factor to each observation is obtained accordingly. Since fhe variance of each observation sequence is esfimafed only from ifs most recent dafa of a predefermined lengfh, the algorithm is sew-adaptive. This algorithm is applicable to both stafic and dynamk sysfems including timeinvariant and lime-variant processes. The effeciiveness of the algorifhm is denwnsfraled using apiecewise-smoofh signal and a time-varyingflow signol.","PeriodicalId":135321,"journal":{"name":"Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A wavelet-based multi-sensor data fusion algorithm\",\"authors\":\"Lijun Xu, Jian Qiu Zhane, Yong Yan\",\"doi\":\"10.1109/IMTC.2003.1208199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Absfrnd - This paper presents a wavelef transform-based data fusion algorithm for multi-sensor systems. Wfh fhis algorithm fhe optimum estimafe of a measurand can be obtained in terms of Minimum Mean Square Error. The variance of the optimum esfimate is not only smaller than that of each observalion sequence but also smaller than the arifhmefic average estimate. To implement this algorithm, fhe variance of each observalion sequence is estimafed using wavelef tronsform and fhe optimum weighfing factor to each observation is obtained accordingly. Since fhe variance of each observation sequence is esfimafed only from ifs most recent dafa of a predefermined lengfh, the algorithm is sew-adaptive. This algorithm is applicable to both stafic and dynamk sysfems including timeinvariant and lime-variant processes. The effeciiveness of the algorifhm is denwnsfraled using apiecewise-smoofh signal and a time-varyingflow signol.\",\"PeriodicalId\":135321,\"journal\":{\"name\":\"Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.2003.1208199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2003.1208199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

摘要:提出了一种基于小波变换的多传感器数据融合算法。使用该算法,可以根据最小均方误差获得测量值的最优估计。最优估计的方差不仅小于每个观测序列的方差,而且小于算法平均估计。为了实现该算法,利用小波变换对每个观测序列的方差进行估计,得到每个观测序列的最优加权因子。由于每个观测序列的方差仅从其最近的预定长度的数据中估计,因此该算法是自适应的。该算法既适用于静态系统,也适用于动态系统,包括定常过程和变常过程。采用非平滑信号和时变流量信号来验证算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wavelet-based multi-sensor data fusion algorithm
Absfrnd - This paper presents a wavelef transform-based data fusion algorithm for multi-sensor systems. Wfh fhis algorithm fhe optimum estimafe of a measurand can be obtained in terms of Minimum Mean Square Error. The variance of the optimum esfimate is not only smaller than that of each observalion sequence but also smaller than the arifhmefic average estimate. To implement this algorithm, fhe variance of each observalion sequence is estimafed using wavelef tronsform and fhe optimum weighfing factor to each observation is obtained accordingly. Since fhe variance of each observation sequence is esfimafed only from ifs most recent dafa of a predefermined lengfh, the algorithm is sew-adaptive. This algorithm is applicable to both stafic and dynamk sysfems including timeinvariant and lime-variant processes. The effeciiveness of the algorifhm is denwnsfraled using apiecewise-smoofh signal and a time-varyingflow signol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信