基于瓶颈变压器和增强特征融合的行人多目标跟踪

Xinyao Wang, Xuezhi Xiang
{"title":"基于瓶颈变压器和增强特征融合的行人多目标跟踪","authors":"Xinyao Wang, Xuezhi Xiang","doi":"10.1109/ICMA57826.2023.10215981","DOIUrl":null,"url":null,"abstract":"Due to balanced tracking accuracy and speed, Joint-detection-and-embedding (JDE) tracking paradigm has drawn great attention, which employs a single work to predict detection and appearance features simultaneously. Building on a strong baseline CSTrack, we replace the spatial convolutions in the final block of backbone with a Bottleneck Transformer, which models global relationships across objects and reduces the parameters. Besides, we introduce an enhanced feature fusion block with structural re-parameterization technique to augment multi-feature fusion for alleviating the contradiction between detection and identification embedding subtasks and maintaining the inference-time. The results on MOT16 and MOT17 datasets indicate that our method achieves competitive tracking results.","PeriodicalId":151364,"journal":{"name":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pedestrian Multi-Object Tracking with Bottleneck Transformer and Enhanced Feature Fusion\",\"authors\":\"Xinyao Wang, Xuezhi Xiang\",\"doi\":\"10.1109/ICMA57826.2023.10215981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to balanced tracking accuracy and speed, Joint-detection-and-embedding (JDE) tracking paradigm has drawn great attention, which employs a single work to predict detection and appearance features simultaneously. Building on a strong baseline CSTrack, we replace the spatial convolutions in the final block of backbone with a Bottleneck Transformer, which models global relationships across objects and reduces the parameters. Besides, we introduce an enhanced feature fusion block with structural re-parameterization technique to augment multi-feature fusion for alleviating the contradiction between detection and identification embedding subtasks and maintaining the inference-time. The results on MOT16 and MOT17 datasets indicate that our method achieves competitive tracking results.\",\"PeriodicalId\":151364,\"journal\":{\"name\":\"2023 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA57826.2023.10215981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA57826.2023.10215981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于兼顾了跟踪精度和速度,联合检测-嵌入(Joint-detection-and-embedding, JDE)跟踪模式受到了广泛的关注,该模式利用单个工作同时预测检测和外观特征。建立在一个强大的基线CSTrack上,我们用瓶颈转换器替换主干最后块中的空间卷积,瓶颈转换器对对象之间的全局关系进行建模并减少参数。此外,我们引入了一种基于结构重参数化技术的增强特征融合块来增强多特征融合,以缓解检测和识别嵌入子任务之间的矛盾,并保持推理时间。在MOT16和MOT17数据集上的结果表明,我们的方法取得了有竞争力的跟踪结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian Multi-Object Tracking with Bottleneck Transformer and Enhanced Feature Fusion
Due to balanced tracking accuracy and speed, Joint-detection-and-embedding (JDE) tracking paradigm has drawn great attention, which employs a single work to predict detection and appearance features simultaneously. Building on a strong baseline CSTrack, we replace the spatial convolutions in the final block of backbone with a Bottleneck Transformer, which models global relationships across objects and reduces the parameters. Besides, we introduce an enhanced feature fusion block with structural re-parameterization technique to augment multi-feature fusion for alleviating the contradiction between detection and identification embedding subtasks and maintaining the inference-time. The results on MOT16 and MOT17 datasets indicate that our method achieves competitive tracking results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信