主题分割的声学指标

Julia Hirschberg, C. H. Nakatani
{"title":"主题分割的声学指标","authors":"Julia Hirschberg, C. H. Nakatani","doi":"10.21437/ICSLP.1998-582","DOIUrl":null,"url":null,"abstract":"The segmentation of text and speech into topics and subtopics is an important step in document interpretation. For text, formatting information, such as headings and paragraphing, is available to aid in this endeavor, although this information is by no means su cient. For speech, the task is even more di cult. We present results of the application of machine learning techniques to the automatic identi cation of intonational phrases beginning and ending 'topics' determined independently by annotators for two corpora | the Boston Directions Corpus and the Broadcast News (HUB-4) DARPA/NIST database.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"Acoustic indicators of topic segmentation\",\"authors\":\"Julia Hirschberg, C. H. Nakatani\",\"doi\":\"10.21437/ICSLP.1998-582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The segmentation of text and speech into topics and subtopics is an important step in document interpretation. For text, formatting information, such as headings and paragraphing, is available to aid in this endeavor, although this information is by no means su cient. For speech, the task is even more di cult. We present results of the application of machine learning techniques to the automatic identi cation of intonational phrases beginning and ending 'topics' determined independently by annotators for two corpora | the Boston Directions Corpus and the Broadcast News (HUB-4) DARPA/NIST database.\",\"PeriodicalId\":117113,\"journal\":{\"name\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1998-582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

将文本和语音分割为主题和子主题是文件解释的重要步骤。对于文本,格式信息,如标题和分段,可以帮助完成这项工作,尽管这些信息绝不是足够的。对于演讲来说,任务更加艰巨。我们展示了机器学习技术在两个语料库(波士顿方向语料库和广播新闻(HUB-4) DARPA/NIST数据库)中由注释者独立确定的语调短语开始和结束“主题”的自动识别中的应用结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic indicators of topic segmentation
The segmentation of text and speech into topics and subtopics is an important step in document interpretation. For text, formatting information, such as headings and paragraphing, is available to aid in this endeavor, although this information is by no means su cient. For speech, the task is even more di cult. We present results of the application of machine learning techniques to the automatic identi cation of intonational phrases beginning and ending 'topics' determined independently by annotators for two corpora | the Boston Directions Corpus and the Broadcast News (HUB-4) DARPA/NIST database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信