Atabak Dehban, Carlos Cardoso, Pedro Vicente, A. Bernardino, J. Santos-Victor
{"title":"机器人交互物理参数估计器(RIPPE)","authors":"Atabak Dehban, Carlos Cardoso, Pedro Vicente, A. Bernardino, J. Santos-Victor","doi":"10.1109/DEVLRN.2019.8850710","DOIUrl":null,"url":null,"abstract":"The ability to reason about natural laws of an environment directly contributes to successful performance in it. In this work, we present RIPPE, a framework that allows a robot to leverage existing physics simulators as its knowledge base for learning interactions with in-animate objects. To achieve this, the robot needs to initially interact with its surrounding environment and observe the effects of its behaviours. Relying on the simulator to efficiently solve the partial differential equations describing these physical interactions, the robot infers consistent physical parameters of its surroundings by repeating the same actions in simulation and evaluate how closely they match its real observations. The learning process is performed using Bayesian Optimisation techniques to sample efficiently the parameter space. We assess the utility of these inferred parameters by measuring how well they can explain physical interactions using previously unseen actions and tools.","PeriodicalId":318973,"journal":{"name":"2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robotic Interactive Physics Parameters Estimator (RIPPE)\",\"authors\":\"Atabak Dehban, Carlos Cardoso, Pedro Vicente, A. Bernardino, J. Santos-Victor\",\"doi\":\"10.1109/DEVLRN.2019.8850710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to reason about natural laws of an environment directly contributes to successful performance in it. In this work, we present RIPPE, a framework that allows a robot to leverage existing physics simulators as its knowledge base for learning interactions with in-animate objects. To achieve this, the robot needs to initially interact with its surrounding environment and observe the effects of its behaviours. Relying on the simulator to efficiently solve the partial differential equations describing these physical interactions, the robot infers consistent physical parameters of its surroundings by repeating the same actions in simulation and evaluate how closely they match its real observations. The learning process is performed using Bayesian Optimisation techniques to sample efficiently the parameter space. We assess the utility of these inferred parameters by measuring how well they can explain physical interactions using previously unseen actions and tools.\",\"PeriodicalId\":318973,\"journal\":{\"name\":\"2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2019.8850710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2019.8850710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The ability to reason about natural laws of an environment directly contributes to successful performance in it. In this work, we present RIPPE, a framework that allows a robot to leverage existing physics simulators as its knowledge base for learning interactions with in-animate objects. To achieve this, the robot needs to initially interact with its surrounding environment and observe the effects of its behaviours. Relying on the simulator to efficiently solve the partial differential equations describing these physical interactions, the robot infers consistent physical parameters of its surroundings by repeating the same actions in simulation and evaluate how closely they match its real observations. The learning process is performed using Bayesian Optimisation techniques to sample efficiently the parameter space. We assess the utility of these inferred parameters by measuring how well they can explain physical interactions using previously unseen actions and tools.