直接变分数据同化算法中正则化参数优化的场景方法

A. Penenko, Z. Mukatova
{"title":"直接变分数据同化算法中正则化参数优化的场景方法","authors":"A. Penenko, Z. Mukatova","doi":"10.1109/OPCS.2019.8880181","DOIUrl":null,"url":null,"abstract":"The problem of data assimilation for the advection diffusion model is considered. Data assimilation is carried out by choosing an uncertainty function that has the sense of the emission sources. Previously, a direct algorithm for data assimilation with a stabilizer in the cost functional governing the norm of the uncertainty function and its spatial derivative was introduced. In the paper, the assimilation parameters are found for a scenario with a known solution (training sample). The optimization is carried out by a genetic algorithm. The values found are used in scenarios with unknown emission sources (control experiment). The results of numerical experiments on solving a test problem are given.","PeriodicalId":288547,"journal":{"name":"2019 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scenario Approach for the Optimization of Regularization Parameters in the Direct Variational Data Assimilation Algorithm\",\"authors\":\"A. Penenko, Z. Mukatova\",\"doi\":\"10.1109/OPCS.2019.8880181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of data assimilation for the advection diffusion model is considered. Data assimilation is carried out by choosing an uncertainty function that has the sense of the emission sources. Previously, a direct algorithm for data assimilation with a stabilizer in the cost functional governing the norm of the uncertainty function and its spatial derivative was introduced. In the paper, the assimilation parameters are found for a scenario with a known solution (training sample). The optimization is carried out by a genetic algorithm. The values found are used in scenarios with unknown emission sources (control experiment). The results of numerical experiments on solving a test problem are given.\",\"PeriodicalId\":288547,\"journal\":{\"name\":\"2019 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OPCS.2019.8880181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OPCS.2019.8880181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了平流扩散模式的资料同化问题。数据同化是通过选择一个具有辐射源意义的不确定性函数来实现的。在此之前,介绍了一种直接的数据同化算法,该算法在控制不确定性函数及其空间导数范数的代价函数中加入稳定器。本文针对一个已知解(训练样本)的场景寻找同化参数。采用遗传算法进行优化。所发现的数值用于具有未知排放源的情景(控制实验)。给出了解决一个测试问题的数值实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scenario Approach for the Optimization of Regularization Parameters in the Direct Variational Data Assimilation Algorithm
The problem of data assimilation for the advection diffusion model is considered. Data assimilation is carried out by choosing an uncertainty function that has the sense of the emission sources. Previously, a direct algorithm for data assimilation with a stabilizer in the cost functional governing the norm of the uncertainty function and its spatial derivative was introduced. In the paper, the assimilation parameters are found for a scenario with a known solution (training sample). The optimization is carried out by a genetic algorithm. The values found are used in scenarios with unknown emission sources (control experiment). The results of numerical experiments on solving a test problem are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信