时变时滞神经网络的一种新的稳定性条件

Yun Chen, W. Zheng
{"title":"时变时滞神经网络的一种新的稳定性条件","authors":"Yun Chen, W. Zheng","doi":"10.1109/WCICA.2012.6357894","DOIUrl":null,"url":null,"abstract":"This paper discusses stability of neural networks (NNs) with time-varying delay. Delay-fractioning Lyapunov-Krasovskii functional (LKF) method and convex analysis are applied to establish a new stability condition. Two possible cases for the delay are taken into account when the delay interval is equivalently divided into two subintervals. The maximal allowable delay that ensures global asymptotical stability of the neural network under consideration can be computed by solving a set of linear matrix inequalities (LMIs). The advantage of the method is illustrated by numerical examples.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new stability condition of neural networks with time-varying delay\",\"authors\":\"Yun Chen, W. Zheng\",\"doi\":\"10.1109/WCICA.2012.6357894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses stability of neural networks (NNs) with time-varying delay. Delay-fractioning Lyapunov-Krasovskii functional (LKF) method and convex analysis are applied to establish a new stability condition. Two possible cases for the delay are taken into account when the delay interval is equivalently divided into two subintervals. The maximal allowable delay that ensures global asymptotical stability of the neural network under consideration can be computed by solving a set of linear matrix inequalities (LMIs). The advantage of the method is illustrated by numerical examples.\",\"PeriodicalId\":114901,\"journal\":{\"name\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2012.6357894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6357894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了时变时滞神经网络的稳定性问题。采用延迟分式Lyapunov-Krasovskii泛函(LKF)方法和凸分析方法建立了新的稳定性条件。当将延迟区间等效地划分为两个子区间时,考虑了两种可能的延迟情况。保证所考虑的神经网络全局渐近稳定的最大允许延迟可以通过求解一组线性矩阵不等式来计算。数值算例说明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new stability condition of neural networks with time-varying delay
This paper discusses stability of neural networks (NNs) with time-varying delay. Delay-fractioning Lyapunov-Krasovskii functional (LKF) method and convex analysis are applied to establish a new stability condition. Two possible cases for the delay are taken into account when the delay interval is equivalently divided into two subintervals. The maximal allowable delay that ensures global asymptotical stability of the neural network under consideration can be computed by solving a set of linear matrix inequalities (LMIs). The advantage of the method is illustrated by numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信