单眼SLAM模糊预测

L. Russo, Giuseppe Airò Farulla, Marco Indaco, Stefano Rosa, Daniele Rolfo, B. Bona
{"title":"单眼SLAM模糊预测","authors":"L. Russo, Giuseppe Airò Farulla, Marco Indaco, Stefano Rosa, Daniele Rolfo, B. Bona","doi":"10.1109/IDT.2013.6727095","DOIUrl":null,"url":null,"abstract":"The paper presents a method aiming at improving the reliability of Simultaneous Localization And Mapping (SLAM) approaches based on vision systems. Classical SLAM approaches treat camera capturing time as negligible, and the recorded frames as sharp and well-defined, but this hypothesis does not hold true when the camera is moving too fast. In such cases, in fact, frames may be severely degraded by motion blur, making features matching task a difficult operation. The method here presented is based on a novel approach that combines the benefits of a fully probabilistic SLAM algorithm with the basic ideas behind modern motion blur handling algorithms. Whereby the Kalman Filter, the new approach predicts the best possible blur Point Spread Function (PSF) for each feature and performs matching using also this information.","PeriodicalId":446826,"journal":{"name":"2013 8th IEEE Design and Test Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Blurring prediction in monocular SLAM\",\"authors\":\"L. Russo, Giuseppe Airò Farulla, Marco Indaco, Stefano Rosa, Daniele Rolfo, B. Bona\",\"doi\":\"10.1109/IDT.2013.6727095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a method aiming at improving the reliability of Simultaneous Localization And Mapping (SLAM) approaches based on vision systems. Classical SLAM approaches treat camera capturing time as negligible, and the recorded frames as sharp and well-defined, but this hypothesis does not hold true when the camera is moving too fast. In such cases, in fact, frames may be severely degraded by motion blur, making features matching task a difficult operation. The method here presented is based on a novel approach that combines the benefits of a fully probabilistic SLAM algorithm with the basic ideas behind modern motion blur handling algorithms. Whereby the Kalman Filter, the new approach predicts the best possible blur Point Spread Function (PSF) for each feature and performs matching using also this information.\",\"PeriodicalId\":446826,\"journal\":{\"name\":\"2013 8th IEEE Design and Test Symposium\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th IEEE Design and Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2013.6727095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th IEEE Design and Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2013.6727095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种基于视觉系统的同时定位与映射方法的可靠性改进方法。经典的SLAM方法将相机捕捉时间视为可以忽略不计的,并且记录的帧是清晰而明确的,但是当相机移动太快时,这个假设就不成立了。事实上,在这种情况下,帧可能会因运动模糊而严重退化,使特征匹配任务成为一项困难的操作。本文提出的方法是基于一种新颖的方法,该方法结合了全概率SLAM算法的优点和现代运动模糊处理算法背后的基本思想。通过卡尔曼滤波,新方法预测每个特征的最佳模糊点扩散函数(PSF),并使用该信息执行匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blurring prediction in monocular SLAM
The paper presents a method aiming at improving the reliability of Simultaneous Localization And Mapping (SLAM) approaches based on vision systems. Classical SLAM approaches treat camera capturing time as negligible, and the recorded frames as sharp and well-defined, but this hypothesis does not hold true when the camera is moving too fast. In such cases, in fact, frames may be severely degraded by motion blur, making features matching task a difficult operation. The method here presented is based on a novel approach that combines the benefits of a fully probabilistic SLAM algorithm with the basic ideas behind modern motion blur handling algorithms. Whereby the Kalman Filter, the new approach predicts the best possible blur Point Spread Function (PSF) for each feature and performs matching using also this information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信