{"title":"少自同构的Cayley图:无限群的情况","authors":"P. Leemann, M. Salle","doi":"10.5802/ahl.118","DOIUrl":null,"url":null,"abstract":"We characterize the finitely generated groups that admit a Cayley graph whose only automorphisms are the translations, confirming a conjecture by Watkins from 1976. The proof relies on random walk techniques. As a consequence, every finitely generated group admits a Cayley graph with countable automorphism group. We also treat the case of directed graphs.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cayley graphs with few automorphisms: the case of infinite groups\",\"authors\":\"P. Leemann, M. Salle\",\"doi\":\"10.5802/ahl.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the finitely generated groups that admit a Cayley graph whose only automorphisms are the translations, confirming a conjecture by Watkins from 1976. The proof relies on random walk techniques. As a consequence, every finitely generated group admits a Cayley graph with countable automorphism group. We also treat the case of directed graphs.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cayley graphs with few automorphisms: the case of infinite groups
We characterize the finitely generated groups that admit a Cayley graph whose only automorphisms are the translations, confirming a conjecture by Watkins from 1976. The proof relies on random walk techniques. As a consequence, every finitely generated group admits a Cayley graph with countable automorphism group. We also treat the case of directed graphs.