采用非广泛熵正则化模糊共聚类方法对彩色图像进行二值聚类

Seba Susan, Meetu Agarwal, Seetu Agarwal, Anand Kartikeya, Ritu Meena
{"title":"采用非广泛熵正则化模糊共聚类方法对彩色图像进行二值聚类","authors":"Seba Susan, Meetu Agarwal, Seetu Agarwal, Anand Kartikeya, Ritu Meena","doi":"10.1109/IC3I.2016.7918018","DOIUrl":null,"url":null,"abstract":"This paper proposes semantically meaningful binary clustering of color images by a novel fuzzy co-clustering algorithm. The clustering objective function incorporates the non-extensive entropy with Gaussian gain for regularization purpose. The chromatic color components in the CIEL∗A∗B∗ color space form the feature space for clustering. The result is a very good differentiation of the colors in the scene as belonging to the foreground object and the background, which helps in scene understanding and information gathering. One direct application of our tool is salient or foreground object segmentation. Experimentation on images from a benchmark dataset and comparisons with the state of the art clustering and segmentation methods establish the efficiency of our approach.","PeriodicalId":305971,"journal":{"name":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Binary clustering of color images by fuzzy co-clustering with non-extensive entropy regularization\",\"authors\":\"Seba Susan, Meetu Agarwal, Seetu Agarwal, Anand Kartikeya, Ritu Meena\",\"doi\":\"10.1109/IC3I.2016.7918018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes semantically meaningful binary clustering of color images by a novel fuzzy co-clustering algorithm. The clustering objective function incorporates the non-extensive entropy with Gaussian gain for regularization purpose. The chromatic color components in the CIEL∗A∗B∗ color space form the feature space for clustering. The result is a very good differentiation of the colors in the scene as belonging to the foreground object and the background, which helps in scene understanding and information gathering. One direct application of our tool is salient or foreground object segmentation. Experimentation on images from a benchmark dataset and comparisons with the state of the art clustering and segmentation methods establish the efficiency of our approach.\",\"PeriodicalId\":305971,\"journal\":{\"name\":\"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2016.7918018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2016.7918018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的模糊共聚类算法,对彩色图像进行语义上有意义的二值聚类。聚类目标函数将非泛化熵与高斯增益相结合以实现正则化。CIEL∗A∗B∗颜色空间中的彩色分量构成聚类的特征空间。结果很好地区分了场景中属于前景物体和背景物体的颜色,这有助于场景的理解和信息收集。我们的工具的一个直接应用是突出或前景对象分割。对来自基准数据集的图像进行实验,并与最先进的聚类和分割方法进行比较,证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary clustering of color images by fuzzy co-clustering with non-extensive entropy regularization
This paper proposes semantically meaningful binary clustering of color images by a novel fuzzy co-clustering algorithm. The clustering objective function incorporates the non-extensive entropy with Gaussian gain for regularization purpose. The chromatic color components in the CIEL∗A∗B∗ color space form the feature space for clustering. The result is a very good differentiation of the colors in the scene as belonging to the foreground object and the background, which helps in scene understanding and information gathering. One direct application of our tool is salient or foreground object segmentation. Experimentation on images from a benchmark dataset and comparisons with the state of the art clustering and segmentation methods establish the efficiency of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信