基于变点模型的泡沫型市场退出策略

M. Zhitlukhin, W. Ziemba
{"title":"基于变点模型的泡沫型市场退出策略","authors":"M. Zhitlukhin, W. Ziemba","doi":"10.1080/21649502.2015.1165918","DOIUrl":null,"url":null,"abstract":"We present applications of a stochastic changepoint detection model in the context of bubble-like financial markets. A changepoint of a random sequence is an unknown moment of time when its trend changes. The aim is to detect a direction change in a sequence of stock market or other asset index values, while sequentially observing it. A detection rule thus models an exit strategy before a possible market crash. We describe theoretical results and apply them to several stock market bubbles including stock markets in the US in 1929, 1987, 2008, and China in 2015.","PeriodicalId":438897,"journal":{"name":"Quantitative Finance Letters","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exit strategies in bubble-like markets using a changepoint model†\",\"authors\":\"M. Zhitlukhin, W. Ziemba\",\"doi\":\"10.1080/21649502.2015.1165918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present applications of a stochastic changepoint detection model in the context of bubble-like financial markets. A changepoint of a random sequence is an unknown moment of time when its trend changes. The aim is to detect a direction change in a sequence of stock market or other asset index values, while sequentially observing it. A detection rule thus models an exit strategy before a possible market crash. We describe theoretical results and apply them to several stock market bubbles including stock markets in the US in 1929, 1987, 2008, and China in 2015.\",\"PeriodicalId\":438897,\"journal\":{\"name\":\"Quantitative Finance Letters\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21649502.2015.1165918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21649502.2015.1165918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种随机变化点检测模型在泡沫型金融市场中的应用。随机序列的变点是其趋势发生变化的未知时刻。其目的是检测股票市场或其他资产指数值序列的方向变化,同时对其进行顺序观察。因此,检测规则在可能的市场崩溃之前模拟了退出策略。我们描述了理论结果,并将其应用于几个股市泡沫,包括1929年、1987年、2008年和2015年的中国股市。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exit strategies in bubble-like markets using a changepoint model†
We present applications of a stochastic changepoint detection model in the context of bubble-like financial markets. A changepoint of a random sequence is an unknown moment of time when its trend changes. The aim is to detect a direction change in a sequence of stock market or other asset index values, while sequentially observing it. A detection rule thus models an exit strategy before a possible market crash. We describe theoretical results and apply them to several stock market bubbles including stock markets in the US in 1929, 1987, 2008, and China in 2015.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信