手写识别与多图

Wassim Swaileh, T. Paquet, Yann Soullard, Pierrick Tranouez
{"title":"手写识别与多图","authors":"Wassim Swaileh, T. Paquet, Yann Soullard, Pierrick Tranouez","doi":"10.1109/ICDAR.2017.31","DOIUrl":null,"url":null,"abstract":"We introduce a novel handwriting recognition approach based on sub-lexical units known as multigrams of characters, that are variable lengths characters sequences. A Hidden Semi Markov model is used to model the multigrams occurrences within the target language corpus. Decoding the training language corpus with this model provides an optimized multigram lexicon of reduced size with high coverage rate of OOV compared to the traditional word modeling approach. The handwriting recognition system is composed of two components: the optical model and the statistical n-grams of multigrams language model. The two models are combined together during the recognition process using a decoding technique based on Weighted Finite State Transducers (WFST). We experiment the approach on two Latin language datasets (the French RIMES and English IAM datasets) and we show that it outperforms words and character models language models for high Out Of Vocabulary (OOV) words rates, and that it performs similarly to these traditional models for low OOV rates, with the advantage of a reduced complexity.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Handwriting Recognition with Multigrams\",\"authors\":\"Wassim Swaileh, T. Paquet, Yann Soullard, Pierrick Tranouez\",\"doi\":\"10.1109/ICDAR.2017.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel handwriting recognition approach based on sub-lexical units known as multigrams of characters, that are variable lengths characters sequences. A Hidden Semi Markov model is used to model the multigrams occurrences within the target language corpus. Decoding the training language corpus with this model provides an optimized multigram lexicon of reduced size with high coverage rate of OOV compared to the traditional word modeling approach. The handwriting recognition system is composed of two components: the optical model and the statistical n-grams of multigrams language model. The two models are combined together during the recognition process using a decoding technique based on Weighted Finite State Transducers (WFST). We experiment the approach on two Latin language datasets (the French RIMES and English IAM datasets) and we show that it outperforms words and character models language models for high Out Of Vocabulary (OOV) words rates, and that it performs similarly to these traditional models for low OOV rates, with the advantage of a reduced complexity.\",\"PeriodicalId\":433676,\"journal\":{\"name\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2017.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们介绍了一种新的基于子词汇单位的手写识别方法,即可变长度字符序列的字符多图。使用隐半马尔可夫模型对目标语言语料库中的多图出现进行建模。使用该模型对训练语料库进行解码,与传统的词建模方法相比,提供了一个优化的规模减小的多图词典,并且具有较高的OOV覆盖率。手写识别系统由光学模型和统计n图语言模型两部分组成。在识别过程中,使用基于加权有限状态传感器(WFST)的解码技术将两个模型结合在一起。我们在两个拉丁语言数据集(法语RIMES和英语IAM数据集)上对该方法进行了实验,结果表明,对于高词汇量外(OOV)单词率,它优于单词和字符模型语言模型,并且对于低OOV率,它的性能与这些传统模型相似,具有降低复杂性的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwriting Recognition with Multigrams
We introduce a novel handwriting recognition approach based on sub-lexical units known as multigrams of characters, that are variable lengths characters sequences. A Hidden Semi Markov model is used to model the multigrams occurrences within the target language corpus. Decoding the training language corpus with this model provides an optimized multigram lexicon of reduced size with high coverage rate of OOV compared to the traditional word modeling approach. The handwriting recognition system is composed of two components: the optical model and the statistical n-grams of multigrams language model. The two models are combined together during the recognition process using a decoding technique based on Weighted Finite State Transducers (WFST). We experiment the approach on two Latin language datasets (the French RIMES and English IAM datasets) and we show that it outperforms words and character models language models for high Out Of Vocabulary (OOV) words rates, and that it performs similarly to these traditional models for low OOV rates, with the advantage of a reduced complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信