用proony插值法积分高振荡函数

G. P. Zouros, V. Borulko
{"title":"用proony插值法积分高振荡函数","authors":"G. P. Zouros, V. Borulko","doi":"10.1109/MMET.2018.8460364","DOIUrl":null,"url":null,"abstract":"In this work we present an alternative way of integrating highly oscillating functions, using Prony interpolation (PI) technique. Such integrals appear in various engineering problems, including physical optics, high-frequency scattering, or retarded potential computations. We develop a quadrature for the numerical integration over a finite domain [a, b]. Domain [a, b] is suitably divided into subdomains, within each PI is performed on the integrand function. We investigate lower as well as higher order Prony interpolation (HOPI) schemes for the accurate computation of the integral. We compare HOPI quadrature in terms of function evaluations versus other suitable quadratures for highly oscillating functions, such as Matlab's quadgk, and we compare its accuracy with Levin type method. Various numerical results are presented.","PeriodicalId":343933,"journal":{"name":"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integration of Highly Oscillating Functions Using Prony Interpolation\",\"authors\":\"G. P. Zouros, V. Borulko\",\"doi\":\"10.1109/MMET.2018.8460364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present an alternative way of integrating highly oscillating functions, using Prony interpolation (PI) technique. Such integrals appear in various engineering problems, including physical optics, high-frequency scattering, or retarded potential computations. We develop a quadrature for the numerical integration over a finite domain [a, b]. Domain [a, b] is suitably divided into subdomains, within each PI is performed on the integrand function. We investigate lower as well as higher order Prony interpolation (HOPI) schemes for the accurate computation of the integral. We compare HOPI quadrature in terms of function evaluations versus other suitable quadratures for highly oscillating functions, such as Matlab's quadgk, and we compare its accuracy with Levin type method. Various numerical results are presented.\",\"PeriodicalId\":343933,\"journal\":{\"name\":\"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2018.8460364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2018.8460364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们提出了一种使用proony插值(PI)技术积分高振荡函数的替代方法。这样的积分出现在各种工程问题中,包括物理光学、高频散射或延迟电位计算。我们发展了有限域上数值积分的正交[a, b]。将域[a, b]适当划分为子域,在每个PI内执行被积函数。我们研究了低阶和高阶proony插值(HOPI)格式来精确计算积分。我们将HOPI正交与其他适用于高振荡函数的正交(如Matlab的quadgk)在函数评估方面进行了比较,并将其精度与Levin类型方法进行了比较。给出了各种数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of Highly Oscillating Functions Using Prony Interpolation
In this work we present an alternative way of integrating highly oscillating functions, using Prony interpolation (PI) technique. Such integrals appear in various engineering problems, including physical optics, high-frequency scattering, or retarded potential computations. We develop a quadrature for the numerical integration over a finite domain [a, b]. Domain [a, b] is suitably divided into subdomains, within each PI is performed on the integrand function. We investigate lower as well as higher order Prony interpolation (HOPI) schemes for the accurate computation of the integral. We compare HOPI quadrature in terms of function evaluations versus other suitable quadratures for highly oscillating functions, such as Matlab's quadgk, and we compare its accuracy with Levin type method. Various numerical results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信