具有变形重构和跨学科一致性目标的自监督里程碑学习

Chun-Hung Chao, M. Niethammer
{"title":"具有变形重构和跨学科一致性目标的自监督里程碑学习","authors":"Chun-Hung Chao, M. Niethammer","doi":"10.48550/arXiv.2308.04987","DOIUrl":null,"url":null,"abstract":"A Point Distribution Model (PDM) is the basis of a Statistical Shape Model (SSM) that relies on a set of landmark points to represent a shape and characterize the shape variation. In this work, we present a self-supervised approach to extract landmark points from a given registration model for the PDMs. Based on the assumption that the landmarks are the points that have the most influence on registration, existing works learn a point-based registration model with a small number of points to estimate the landmark points that influence the deformation the most. However, such approaches assume that the deformation can be captured by point-based registration and quality landmarks can be learned solely with the deformation capturing objective. We argue that data with complicated deformations can not easily be modeled with point-based registration when only a limited number of points is used to extract influential landmark points. Further, landmark consistency is not assured in existing approaches In contrast, we propose to extract landmarks based on a given registration model, which is tailored for the target data, so we can obtain more accurate correspondences. Secondly, to establish the anatomical consistency of the predicted landmarks, we introduce a landmark discovery loss to explicitly encourage the model to predict the landmarks that are anatomically consistent across subjects. We conduct experiments on an osteoarthritis progression prediction task and show our method outperforms existing image-based and point-based approaches.","PeriodicalId":344481,"journal":{"name":"PRIME@MICCAI","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-supervised Landmark Learning with Deformation Reconstruction and Cross-subject Consistency Objectives\",\"authors\":\"Chun-Hung Chao, M. Niethammer\",\"doi\":\"10.48550/arXiv.2308.04987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Point Distribution Model (PDM) is the basis of a Statistical Shape Model (SSM) that relies on a set of landmark points to represent a shape and characterize the shape variation. In this work, we present a self-supervised approach to extract landmark points from a given registration model for the PDMs. Based on the assumption that the landmarks are the points that have the most influence on registration, existing works learn a point-based registration model with a small number of points to estimate the landmark points that influence the deformation the most. However, such approaches assume that the deformation can be captured by point-based registration and quality landmarks can be learned solely with the deformation capturing objective. We argue that data with complicated deformations can not easily be modeled with point-based registration when only a limited number of points is used to extract influential landmark points. Further, landmark consistency is not assured in existing approaches In contrast, we propose to extract landmarks based on a given registration model, which is tailored for the target data, so we can obtain more accurate correspondences. Secondly, to establish the anatomical consistency of the predicted landmarks, we introduce a landmark discovery loss to explicitly encourage the model to predict the landmarks that are anatomically consistent across subjects. We conduct experiments on an osteoarthritis progression prediction task and show our method outperforms existing image-based and point-based approaches.\",\"PeriodicalId\":344481,\"journal\":{\"name\":\"PRIME@MICCAI\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRIME@MICCAI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2308.04987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRIME@MICCAI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.04987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

点分布模型(PDM)是统计形状模型(SSM)的基础,SSM依赖于一组地标点来表示形状并表征形状变化。在这项工作中,我们提出了一种自监督方法,从给定的pdm配准模型中提取地标点。现有作品假设地标点是对配准影响最大的点,学习少量点的基于点的配准模型来估计对变形影响最大的地标点。然而,这些方法假设变形可以通过基于点的配准来捕获,并且质量地标可以单独与变形捕获目标一起学习。我们认为,当仅使用有限数量的点来提取有影响的地标点时,具有复杂变形的数据不容易用基于点的配准建模。此外,现有方法不能保证地标一致性,因此,我们提出基于给定的配准模型提取地标,该模型针对目标数据量身定制,从而获得更准确的对应关系。其次,为了建立预测地标的解剖学一致性,我们引入地标发现损失来明确鼓励模型预测跨受试者解剖一致的地标。我们对骨关节炎进展预测任务进行了实验,并表明我们的方法优于现有的基于图像和基于点的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-supervised Landmark Learning with Deformation Reconstruction and Cross-subject Consistency Objectives
A Point Distribution Model (PDM) is the basis of a Statistical Shape Model (SSM) that relies on a set of landmark points to represent a shape and characterize the shape variation. In this work, we present a self-supervised approach to extract landmark points from a given registration model for the PDMs. Based on the assumption that the landmarks are the points that have the most influence on registration, existing works learn a point-based registration model with a small number of points to estimate the landmark points that influence the deformation the most. However, such approaches assume that the deformation can be captured by point-based registration and quality landmarks can be learned solely with the deformation capturing objective. We argue that data with complicated deformations can not easily be modeled with point-based registration when only a limited number of points is used to extract influential landmark points. Further, landmark consistency is not assured in existing approaches In contrast, we propose to extract landmarks based on a given registration model, which is tailored for the target data, so we can obtain more accurate correspondences. Secondly, to establish the anatomical consistency of the predicted landmarks, we introduce a landmark discovery loss to explicitly encourage the model to predict the landmarks that are anatomically consistent across subjects. We conduct experiments on an osteoarthritis progression prediction task and show our method outperforms existing image-based and point-based approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信