Liyang Sun, Tongyu Zong, Siquan Wang, Yong Liu, Yao Wang
{"title":"低延迟直播中的走钢丝:视频速率和播放速度的最佳联合适应","authors":"Liyang Sun, Tongyu Zong, Siquan Wang, Yong Liu, Yao Wang","doi":"10.1145/3458305.3463382","DOIUrl":null,"url":null,"abstract":"It is highly challenging to simultaneously achieve high-rate and low-latency in live video streaming. Chunk-based streaming and playback speed adaptation are two promising new trends to achieve high user Quality-of-Experience (QoE). To thoroughly understand their potentials, we develop a detailed chunk-level dynamic model that characterizes how video rate and playback speed jointly control the evolution of a live streaming session. Leveraging on the model, we first study the optimal joint video rate-playback speed adaptation as a non-linear optimal control problem. We further develop model-free joint adaptation strategies using deep reinforcement learning. Through extensive experiments, we demonstrate that our proposed joint adaptation algorithms significantly outperform rate-only adaptation algorithms and the recently proposed low-latency video streaming algorithms that separately adapt video rate and playback speed without joint optimization. In a wide-range of network conditions, the model-based and model-free algorithms can achieve close-to-optimal trade-offs tailored for users with different QoE preferences.","PeriodicalId":138399,"journal":{"name":"Proceedings of the 12th ACM Multimedia Systems Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Tightrope walking in low-latency live streaming: optimal joint adaptation of video rate and playback speed\",\"authors\":\"Liyang Sun, Tongyu Zong, Siquan Wang, Yong Liu, Yao Wang\",\"doi\":\"10.1145/3458305.3463382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is highly challenging to simultaneously achieve high-rate and low-latency in live video streaming. Chunk-based streaming and playback speed adaptation are two promising new trends to achieve high user Quality-of-Experience (QoE). To thoroughly understand their potentials, we develop a detailed chunk-level dynamic model that characterizes how video rate and playback speed jointly control the evolution of a live streaming session. Leveraging on the model, we first study the optimal joint video rate-playback speed adaptation as a non-linear optimal control problem. We further develop model-free joint adaptation strategies using deep reinforcement learning. Through extensive experiments, we demonstrate that our proposed joint adaptation algorithms significantly outperform rate-only adaptation algorithms and the recently proposed low-latency video streaming algorithms that separately adapt video rate and playback speed without joint optimization. In a wide-range of network conditions, the model-based and model-free algorithms can achieve close-to-optimal trade-offs tailored for users with different QoE preferences.\",\"PeriodicalId\":138399,\"journal\":{\"name\":\"Proceedings of the 12th ACM Multimedia Systems Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM Multimedia Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3458305.3463382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458305.3463382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tightrope walking in low-latency live streaming: optimal joint adaptation of video rate and playback speed
It is highly challenging to simultaneously achieve high-rate and low-latency in live video streaming. Chunk-based streaming and playback speed adaptation are two promising new trends to achieve high user Quality-of-Experience (QoE). To thoroughly understand their potentials, we develop a detailed chunk-level dynamic model that characterizes how video rate and playback speed jointly control the evolution of a live streaming session. Leveraging on the model, we first study the optimal joint video rate-playback speed adaptation as a non-linear optimal control problem. We further develop model-free joint adaptation strategies using deep reinforcement learning. Through extensive experiments, we demonstrate that our proposed joint adaptation algorithms significantly outperform rate-only adaptation algorithms and the recently proposed low-latency video streaming algorithms that separately adapt video rate and playback speed without joint optimization. In a wide-range of network conditions, the model-based and model-free algorithms can achieve close-to-optimal trade-offs tailored for users with different QoE preferences.