基于参与式学习的最大似然进化模糊聚类算法

Orlando Donato Rocha Filho, G. Serra
{"title":"基于参与式学习的最大似然进化模糊聚类算法","authors":"Orlando Donato Rocha Filho, G. Serra","doi":"10.1109/EAIS.2016.7502493","DOIUrl":null,"url":null,"abstract":"This paper presents a fuzzy clustering algorithm based on maximum likelihood with participatory learning. The adopted methodology is based on an online fuzzy inference system with Takagi-Sugeno evolving structure, which employs an adaptive distance norm based on the maximum likelihood criterion with instrumental variable recursive parameter estimation. The performance and application of the proposed algorithm is based on the black box modeling of nonlinear system widely cited in the literature.","PeriodicalId":303392,"journal":{"name":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"79 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evolving fuzzy clustering algorithm based on maximum likelihood with participatory learning\",\"authors\":\"Orlando Donato Rocha Filho, G. Serra\",\"doi\":\"10.1109/EAIS.2016.7502493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fuzzy clustering algorithm based on maximum likelihood with participatory learning. The adopted methodology is based on an online fuzzy inference system with Takagi-Sugeno evolving structure, which employs an adaptive distance norm based on the maximum likelihood criterion with instrumental variable recursive parameter estimation. The performance and application of the proposed algorithm is based on the black box modeling of nonlinear system widely cited in the literature.\",\"PeriodicalId\":303392,\"journal\":{\"name\":\"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"79 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2016.7502493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2016.7502493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于参与式学习的最大似然模糊聚类算法。所采用的方法是基于Takagi-Sugeno进化结构的在线模糊推理系统,该系统采用基于最大似然准则的自适应距离范数和工具变量递归参数估计。该算法的性能和应用是基于文献中广泛引用的非线性系统的黑箱建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving fuzzy clustering algorithm based on maximum likelihood with participatory learning
This paper presents a fuzzy clustering algorithm based on maximum likelihood with participatory learning. The adopted methodology is based on an online fuzzy inference system with Takagi-Sugeno evolving structure, which employs an adaptive distance norm based on the maximum likelihood criterion with instrumental variable recursive parameter estimation. The performance and application of the proposed algorithm is based on the black box modeling of nonlinear system widely cited in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信