{"title":"Slasher:体育场赛车,用于事件相机端到端学习自动驾驶实验","authors":"Yuhuang Hu, Hong Ming Chen, T. Delbrück","doi":"10.1109/AICAS.2019.8771520","DOIUrl":null,"url":null,"abstract":"Slasher is the first open 1/10 scale autonomous driving platform for exploring the use of neuromorphic event cameras for fast driving in unstructured indoor and outdoor environments. Slasher features a DAVIS event-based camera and ROS computer for perception and control. The DAVIS camera provides high dynamic range, sparse output, and sub-millisecond latency output for the quick visual control needed for fast driving. A race controller and Bluetooth remote joystick are used to coordinate different processing pipelines, and a low-cost ultra-wide-band (UWB) positioning system records trajectories. The modular design of Slasher can easily integrate additional features and sensors. In this paper, we show its application in a reflexive Convolutional Neural Network (CNN) steering controller trained by end-to-end learning. We present preliminary experiments in closed-loop indoor and outdoor trail driving.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Slasher: Stadium racer car for event camera end-to-end learning autonomous driving experiments\",\"authors\":\"Yuhuang Hu, Hong Ming Chen, T. Delbrück\",\"doi\":\"10.1109/AICAS.2019.8771520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Slasher is the first open 1/10 scale autonomous driving platform for exploring the use of neuromorphic event cameras for fast driving in unstructured indoor and outdoor environments. Slasher features a DAVIS event-based camera and ROS computer for perception and control. The DAVIS camera provides high dynamic range, sparse output, and sub-millisecond latency output for the quick visual control needed for fast driving. A race controller and Bluetooth remote joystick are used to coordinate different processing pipelines, and a low-cost ultra-wide-band (UWB) positioning system records trajectories. The modular design of Slasher can easily integrate additional features and sensors. In this paper, we show its application in a reflexive Convolutional Neural Network (CNN) steering controller trained by end-to-end learning. We present preliminary experiments in closed-loop indoor and outdoor trail driving.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Slasher: Stadium racer car for event camera end-to-end learning autonomous driving experiments
Slasher is the first open 1/10 scale autonomous driving platform for exploring the use of neuromorphic event cameras for fast driving in unstructured indoor and outdoor environments. Slasher features a DAVIS event-based camera and ROS computer for perception and control. The DAVIS camera provides high dynamic range, sparse output, and sub-millisecond latency output for the quick visual control needed for fast driving. A race controller and Bluetooth remote joystick are used to coordinate different processing pipelines, and a low-cost ultra-wide-band (UWB) positioning system records trajectories. The modular design of Slasher can easily integrate additional features and sensors. In this paper, we show its application in a reflexive Convolutional Neural Network (CNN) steering controller trained by end-to-end learning. We present preliminary experiments in closed-loop indoor and outdoor trail driving.