使用基于提示,微调和多任务基于bert的模型集合的微妙阿拉伯语推文方言和情感识别

Reem Abdel-Salam
{"title":"使用基于提示,微调和多任务基于bert的模型集合的微妙阿拉伯语推文方言和情感识别","authors":"Reem Abdel-Salam","doi":"10.18653/v1/2022.wanlp-1.48","DOIUrl":null,"url":null,"abstract":"Dialect Identification is important to improve the performance of various application as translation, speech recognition, etc. In this paper, we present our findings and results in the Nuanced Arabic Dialect Identification Shared Task (NADI 2022) for country-level dialect identification and sentiment identification for dialectical Arabic. The proposed model is an ensemble between fine-tuned BERT-based models and various approaches of prompt-tuning. Our model secured first place on the leaderboard for subtask 1 with an 27.06 F1-macro score, and subtask 2 secured first place with 75.15 F1-PN score. Our findings show that prompt-tuning-based models achieved better performance when compared to fine-tuning and Multi-task based methods. Moreover, using an ensemble of different loss functions might improve model performance.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dialect & Sentiment Identification in Nuanced Arabic Tweets Using an Ensemble of Prompt-based, Fine-tuned, and Multitask BERT-Based Models\",\"authors\":\"Reem Abdel-Salam\",\"doi\":\"10.18653/v1/2022.wanlp-1.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dialect Identification is important to improve the performance of various application as translation, speech recognition, etc. In this paper, we present our findings and results in the Nuanced Arabic Dialect Identification Shared Task (NADI 2022) for country-level dialect identification and sentiment identification for dialectical Arabic. The proposed model is an ensemble between fine-tuned BERT-based models and various approaches of prompt-tuning. Our model secured first place on the leaderboard for subtask 1 with an 27.06 F1-macro score, and subtask 2 secured first place with 75.15 F1-PN score. Our findings show that prompt-tuning-based models achieved better performance when compared to fine-tuning and Multi-task based methods. Moreover, using an ensemble of different loss functions might improve model performance.\",\"PeriodicalId\":355149,\"journal\":{\"name\":\"Workshop on Arabic Natural Language Processing\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Arabic Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.wanlp-1.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

方言识别对于提高翻译、语音识别等应用的性能具有重要意义。在本文中,我们介绍了我们在国家层面方言识别和辩证阿拉伯语情感识别的微妙阿拉伯语方言识别共享任务(NADI 2022)中的发现和结果。提出的模型是基于bert的微调模型和各种提示调谐方法的集成。我们的模型在子任务1以27.06的F1-macro得分获得了排行榜第一名,子任务2以75.15的F1-PN得分获得了排行榜第一名。我们的研究结果表明,与微调和基于多任务的方法相比,基于即时调整的模型获得了更好的性能。此外,使用不同损失函数的集合可能会提高模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dialect & Sentiment Identification in Nuanced Arabic Tweets Using an Ensemble of Prompt-based, Fine-tuned, and Multitask BERT-Based Models
Dialect Identification is important to improve the performance of various application as translation, speech recognition, etc. In this paper, we present our findings and results in the Nuanced Arabic Dialect Identification Shared Task (NADI 2022) for country-level dialect identification and sentiment identification for dialectical Arabic. The proposed model is an ensemble between fine-tuned BERT-based models and various approaches of prompt-tuning. Our model secured first place on the leaderboard for subtask 1 with an 27.06 F1-macro score, and subtask 2 secured first place with 75.15 F1-PN score. Our findings show that prompt-tuning-based models achieved better performance when compared to fine-tuning and Multi-task based methods. Moreover, using an ensemble of different loss functions might improve model performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信