{"title":"超声对甲状腺结节分类的卷积神经网络","authors":"Igor Machado Seixas, Alexei Manso Correa Machado","doi":"10.5753/sbcas.2023.229645","DOIUrl":null,"url":null,"abstract":"A detecção precoce de linfonodos malignos é crítica para o tratamento do câncer de tireoide. Neste estudo, um sistema de diagnóstico é proposto para classificar nódulos malignos com base em imagens de ultrassom, bem como na escala do Thyroid Imaging Reporting and Data System (TI-RADS). Os experimentos implementam 5 redes convolucionais e 3 máquinas de vetores de suporte aplicadas a um conjunto de dados público. Os resultados preliminares indicam o MobileNet como o melhor classificador binário com 89% de acurácia e o DenseNet121 com 56% de acurácia para as 4 categorias TI-RADS.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redes neurais convolucionais para a classificação de nódulos tireoidianos através de ultrassonografia\",\"authors\":\"Igor Machado Seixas, Alexei Manso Correa Machado\",\"doi\":\"10.5753/sbcas.2023.229645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detecção precoce de linfonodos malignos é crítica para o tratamento do câncer de tireoide. Neste estudo, um sistema de diagnóstico é proposto para classificar nódulos malignos com base em imagens de ultrassom, bem como na escala do Thyroid Imaging Reporting and Data System (TI-RADS). Os experimentos implementam 5 redes convolucionais e 3 máquinas de vetores de suporte aplicadas a um conjunto de dados público. Os resultados preliminares indicam o MobileNet como o melhor classificador binário com 89% de acurácia e o DenseNet121 com 56% de acurácia para as 4 categorias TI-RADS.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.229645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Redes neurais convolucionais para a classificação de nódulos tireoidianos através de ultrassonografia
A detecção precoce de linfonodos malignos é crítica para o tratamento do câncer de tireoide. Neste estudo, um sistema de diagnóstico é proposto para classificar nódulos malignos com base em imagens de ultrassom, bem como na escala do Thyroid Imaging Reporting and Data System (TI-RADS). Os experimentos implementam 5 redes convolucionais e 3 máquinas de vetores de suporte aplicadas a um conjunto de dados público. Os resultados preliminares indicam o MobileNet como o melhor classificador binário com 89% de acurácia e o DenseNet121 com 56% de acurácia para as 4 categorias TI-RADS.