HFAG:用于超大视频数据集视频检索的分层帧关联组

Yin-Jun Miao, Chao Wang, Peng Cui, Lifeng Sun, Pin Tao, Shiqiang Yang
{"title":"HFAG:用于超大视频数据集视频检索的分层帧关联组","authors":"Yin-Jun Miao, Chao Wang, Peng Cui, Lifeng Sun, Pin Tao, Shiqiang Yang","doi":"10.1109/ICIP.2010.5654073","DOIUrl":null,"url":null,"abstract":"Content-based video retrieval systems are desired to fast and accurately find the nearest-neighbors of user input examples from very large video datasets. This poses a great challenge since exhaustive and redundant computation of similarities is required. Cluster based index approaches can be used to address this problem, but the similarity computation and clustering methods for videos are very time-consuming, thus preventing it from indexing very large video datasets. In this paper, we propose the Hierarchical Frame Affinity Group (HFAG), which is a hierarchy of frame clusters built using affinity propagation (AP) method, to represent video clusters. Our proposed video similarity metric and AP method guarantee the high performance of forming HFAG. We then build the cluster-based index structure to support retrieval of the nearest-neighbors of video sequences. The experiments on real large video datasets prove the effectiveness and efficiency of our approach.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HFAG: Hierarchical Frame Affinity Group for video retrieval on very large video dataset\",\"authors\":\"Yin-Jun Miao, Chao Wang, Peng Cui, Lifeng Sun, Pin Tao, Shiqiang Yang\",\"doi\":\"10.1109/ICIP.2010.5654073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content-based video retrieval systems are desired to fast and accurately find the nearest-neighbors of user input examples from very large video datasets. This poses a great challenge since exhaustive and redundant computation of similarities is required. Cluster based index approaches can be used to address this problem, but the similarity computation and clustering methods for videos are very time-consuming, thus preventing it from indexing very large video datasets. In this paper, we propose the Hierarchical Frame Affinity Group (HFAG), which is a hierarchy of frame clusters built using affinity propagation (AP) method, to represent video clusters. Our proposed video similarity metric and AP method guarantee the high performance of forming HFAG. We then build the cluster-based index structure to support retrieval of the nearest-neighbors of video sequences. The experiments on real large video datasets prove the effectiveness and efficiency of our approach.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5654073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5654073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于内容的视频检索系统需要从非常大的视频数据集中快速准确地找到用户输入示例的最近邻居。这带来了巨大的挑战,因为需要详尽和冗余的相似性计算。基于聚类的索引方法可以用来解决这个问题,但是视频的相似度计算和聚类方法非常耗时,因此无法对非常大的视频数据集进行索引。在本文中,我们提出了层次化帧亲和组(HFAG)来表示视频集群,它是使用亲和传播(AP)方法构建的帧集群的层次化结构。我们提出的视频相似度度量和AP方法保证了生成HFAG的高性能。然后,我们构建了基于聚类的索引结构来支持视频序列的最近邻检索。在真实大型视频数据集上的实验证明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HFAG: Hierarchical Frame Affinity Group for video retrieval on very large video dataset
Content-based video retrieval systems are desired to fast and accurately find the nearest-neighbors of user input examples from very large video datasets. This poses a great challenge since exhaustive and redundant computation of similarities is required. Cluster based index approaches can be used to address this problem, but the similarity computation and clustering methods for videos are very time-consuming, thus preventing it from indexing very large video datasets. In this paper, we propose the Hierarchical Frame Affinity Group (HFAG), which is a hierarchy of frame clusters built using affinity propagation (AP) method, to represent video clusters. Our proposed video similarity metric and AP method guarantee the high performance of forming HFAG. We then build the cluster-based index structure to support retrieval of the nearest-neighbors of video sequences. The experiments on real large video datasets prove the effectiveness and efficiency of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信