利用gpu加速显微血液图像中的白细胞分割

Qanita Bani Baker, Khaled Balhaf
{"title":"利用gpu加速显微血液图像中的白细胞分割","authors":"Qanita Bani Baker, Khaled Balhaf","doi":"10.1109/IACS.2017.7921960","DOIUrl":null,"url":null,"abstract":"White blood cell (WBC) segmentation is one of the important topics in the medical image processing field. Several researchers used K-means clustering approach to segment WBC from blood smear microscopic images. In this paper, we use the parallelism capabilities of the Graphics Processing Units (GPUs) to accelerate the segmentation of WBC from microscopic images. We implement the K-means algorithm and the preprocess steps for WBC image segmentation in CUDA programming to take the advantages of large number of cores in GPUs. We systematically implement and evaluate the performance of WBC segmentation operations on CPU, GPUs, and CPU-GPU hybrid systems. In this work, we gained about 3X faster performance than sequential implementation achieved without affecting WBC segmentation accuracy.","PeriodicalId":180504,"journal":{"name":"2017 8th International Conference on Information and Communication Systems (ICICS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exploiting GPUs to accelerate white blood cells segmentation in microscopic blood images\",\"authors\":\"Qanita Bani Baker, Khaled Balhaf\",\"doi\":\"10.1109/IACS.2017.7921960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"White blood cell (WBC) segmentation is one of the important topics in the medical image processing field. Several researchers used K-means clustering approach to segment WBC from blood smear microscopic images. In this paper, we use the parallelism capabilities of the Graphics Processing Units (GPUs) to accelerate the segmentation of WBC from microscopic images. We implement the K-means algorithm and the preprocess steps for WBC image segmentation in CUDA programming to take the advantages of large number of cores in GPUs. We systematically implement and evaluate the performance of WBC segmentation operations on CPU, GPUs, and CPU-GPU hybrid systems. In this work, we gained about 3X faster performance than sequential implementation achieved without affecting WBC segmentation accuracy.\",\"PeriodicalId\":180504,\"journal\":{\"name\":\"2017 8th International Conference on Information and Communication Systems (ICICS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th International Conference on Information and Communication Systems (ICICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACS.2017.7921960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2017.7921960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

白细胞(White blood cell, WBC)分割是医学图像处理领域的重要课题之一。一些研究人员使用k均值聚类方法从血液涂片显微图像中分割白细胞。在本文中,我们利用图形处理单元(gpu)的并行能力来加速从显微图像中分割WBC。为了充分利用gpu多核的优势,我们在CUDA编程中实现了K-means算法和WBC图像分割的预处理步骤。我们在CPU、gpu和CPU- gpu混合系统上系统地实现和评估了WBC分割操作的性能。在这项工作中,我们在不影响WBC分割精度的情况下获得了比顺序实现快3倍的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting GPUs to accelerate white blood cells segmentation in microscopic blood images
White blood cell (WBC) segmentation is one of the important topics in the medical image processing field. Several researchers used K-means clustering approach to segment WBC from blood smear microscopic images. In this paper, we use the parallelism capabilities of the Graphics Processing Units (GPUs) to accelerate the segmentation of WBC from microscopic images. We implement the K-means algorithm and the preprocess steps for WBC image segmentation in CUDA programming to take the advantages of large number of cores in GPUs. We systematically implement and evaluate the performance of WBC segmentation operations on CPU, GPUs, and CPU-GPU hybrid systems. In this work, we gained about 3X faster performance than sequential implementation achieved without affecting WBC segmentation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信