添加词汇链的关键字提取

Zefeng Li, Binlai He, Yangnan
{"title":"添加词汇链的关键字提取","authors":"Zefeng Li, Binlai He, Yangnan","doi":"10.1109/WISA.2014.53","DOIUrl":null,"url":null,"abstract":"Key phrase extraction is widely used in information retrieval, automatic summarizing, text clustering, etc. KEA is a traditional and classical algorithm. But it mainly uses the statistical information and ignores the semantic information. In our paper, we propose a method which combine semantic information with KEA by constructing lexical chain that based on Reget's thesaurus. In this method, we use the semantic similarity between terms to construct lexical chain, and then the length of the chain will be used as a feature to build the extraction model. The experiment results attest that the performance of our system has an obvious improvement compare with the KEA and Nguyen and Kan's method.","PeriodicalId":366169,"journal":{"name":"2014 11th Web Information System and Application Conference","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adding Lexical Chain to Keyphrase Extraction\",\"authors\":\"Zefeng Li, Binlai He, Yangnan\",\"doi\":\"10.1109/WISA.2014.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Key phrase extraction is widely used in information retrieval, automatic summarizing, text clustering, etc. KEA is a traditional and classical algorithm. But it mainly uses the statistical information and ignores the semantic information. In our paper, we propose a method which combine semantic information with KEA by constructing lexical chain that based on Reget's thesaurus. In this method, we use the semantic similarity between terms to construct lexical chain, and then the length of the chain will be used as a feature to build the extraction model. The experiment results attest that the performance of our system has an obvious improvement compare with the KEA and Nguyen and Kan's method.\",\"PeriodicalId\":366169,\"journal\":{\"name\":\"2014 11th Web Information System and Application Conference\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th Web Information System and Application Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2014.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Web Information System and Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2014.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

关键短语提取广泛应用于信息检索、自动总结、文本聚类等领域。KEA算法是一种传统的经典算法。但它主要使用统计信息,而忽略了语义信息。在本文中,我们提出了一种基于Reget词表构建词汇链的方法,将语义信息与KEA相结合。该方法利用词汇之间的语义相似度来构建词汇链,然后以词汇链的长度作为特征来构建提取模型。实验结果表明,与KEA和Nguyen and Kan的方法相比,我们的系统性能有了明显的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adding Lexical Chain to Keyphrase Extraction
Key phrase extraction is widely used in information retrieval, automatic summarizing, text clustering, etc. KEA is a traditional and classical algorithm. But it mainly uses the statistical information and ignores the semantic information. In our paper, we propose a method which combine semantic information with KEA by constructing lexical chain that based on Reget's thesaurus. In this method, we use the semantic similarity between terms to construct lexical chain, and then the length of the chain will be used as a feature to build the extraction model. The experiment results attest that the performance of our system has an obvious improvement compare with the KEA and Nguyen and Kan's method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信