收集网络信息的多传感器可视化工具:对数据质量的见解

Zied Ben Othmane, Damien Bodénès, Cyril de Runz, A. A. Younes
{"title":"收集网络信息的多传感器可视化工具:对数据质量的见解","authors":"Zied Ben Othmane, Damien Bodénès, Cyril de Runz, A. A. Younes","doi":"10.1109/iV.2018.00029","DOIUrl":null,"url":null,"abstract":"In order to inform about sensors veracity and handle the data imprecision, an interactive visualization tool for industrial needs has been developed and presented in this paper. The tool allows user to get deep understandings in a multi-sensor context, especially when considering harvested web data. In order to deal with data imperfection, our methodology is based on quantiles and on the specific modeling for missing values. We present diverse dashboards and visual indicators serve to validate common flow data and help to discover hidden knowledge. According to a use case, we show how our visualization approaches can assist to review data quality about possible critical situations.","PeriodicalId":312162,"journal":{"name":"2018 22nd International Conference Information Visualisation (IV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Multi-sensor Visualization Tool for Harvested Web Information: Insights on Data Quality\",\"authors\":\"Zied Ben Othmane, Damien Bodénès, Cyril de Runz, A. A. Younes\",\"doi\":\"10.1109/iV.2018.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to inform about sensors veracity and handle the data imprecision, an interactive visualization tool for industrial needs has been developed and presented in this paper. The tool allows user to get deep understandings in a multi-sensor context, especially when considering harvested web data. In order to deal with data imperfection, our methodology is based on quantiles and on the specific modeling for missing values. We present diverse dashboards and visual indicators serve to validate common flow data and help to discover hidden knowledge. According to a use case, we show how our visualization approaches can assist to review data quality about possible critical situations.\",\"PeriodicalId\":312162,\"journal\":{\"name\":\"2018 22nd International Conference Information Visualisation (IV)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 22nd International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iV.2018.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 22nd International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了了解传感器的准确性和处理数据的不准确性,本文开发并提出了一种适合工业需要的交互式可视化工具。该工具允许用户深入了解多传感器环境,特别是在考虑采集的网络数据时。为了处理数据不完善,我们的方法是基于分位数和对缺失值的具体建模。我们提供了不同的仪表板和可视化指示器,用于验证常见的流程数据,并帮助发现隐藏的知识。根据一个用例,我们将展示我们的可视化方法如何帮助审查可能出现的危急情况的数据质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-sensor Visualization Tool for Harvested Web Information: Insights on Data Quality
In order to inform about sensors veracity and handle the data imprecision, an interactive visualization tool for industrial needs has been developed and presented in this paper. The tool allows user to get deep understandings in a multi-sensor context, especially when considering harvested web data. In order to deal with data imperfection, our methodology is based on quantiles and on the specific modeling for missing values. We present diverse dashboards and visual indicators serve to validate common flow data and help to discover hidden knowledge. According to a use case, we show how our visualization approaches can assist to review data quality about possible critical situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信