缺失值存在时的核分类规则

M. Pawlak, W. Siedlecki
{"title":"缺失值存在时的核分类规则","authors":"M. Pawlak, W. Siedlecki","doi":"10.1109/ICPR.1990.118190","DOIUrl":null,"url":null,"abstract":"The nonparametric kernel classification rule derived from incomplete data is studied. Methods of designing kernel decision rules possessing optimal asymptotic properties are proposed. Consistency and rates of convergence are examined. It is argued that the replacement methods using the regression approach can lead to the inconsistency of resulting decision rules. On the other hand, a method employing the concept of predictive density yields asymptotically optimal classification rules.<<ETX>>","PeriodicalId":135937,"journal":{"name":"[1990] Proceedings. 10th International Conference on Pattern Recognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel classification rules in the presence of missing values\",\"authors\":\"M. Pawlak, W. Siedlecki\",\"doi\":\"10.1109/ICPR.1990.118190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonparametric kernel classification rule derived from incomplete data is studied. Methods of designing kernel decision rules possessing optimal asymptotic properties are proposed. Consistency and rates of convergence are examined. It is argued that the replacement methods using the regression approach can lead to the inconsistency of resulting decision rules. On the other hand, a method employing the concept of predictive density yields asymptotically optimal classification rules.<<ETX>>\",\"PeriodicalId\":135937,\"journal\":{\"name\":\"[1990] Proceedings. 10th International Conference on Pattern Recognition\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. 10th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1990.118190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. 10th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1990.118190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于不完全数据的非参数核分类规则。提出了具有最优渐近性质的核决策规则的设计方法。检验了一致性和收敛速度。本文认为,使用回归方法的替代方法可能导致最终决策规则的不一致。另一方面,采用预测密度概念的方法产生渐近最优分类规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel classification rules in the presence of missing values
The nonparametric kernel classification rule derived from incomplete data is studied. Methods of designing kernel decision rules possessing optimal asymptotic properties are proposed. Consistency and rates of convergence are examined. It is argued that the replacement methods using the regression approach can lead to the inconsistency of resulting decision rules. On the other hand, a method employing the concept of predictive density yields asymptotically optimal classification rules.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信