基于Kalman滤波和Luenberger观测器的同步磁阻电机无传感器控制鲁棒性评价

G. B. Mariani, N. Voyer
{"title":"基于Kalman滤波和Luenberger观测器的同步磁阻电机无传感器控制鲁棒性评价","authors":"G. B. Mariani, N. Voyer","doi":"10.1109/EDPC.2018.8658307","DOIUrl":null,"url":null,"abstract":"This paper investigates the simulation of a sensorless speed control method with estimates the position and the speed of a synchronous reluctance machine (SyncRM). Speed control implements Field Oriented Control (FOC)., fed with estimated speed and position. The method combines two different estimators. First., a Luenberger observer estimates the load torque of the machine from the mechanical model of the machine., knowing the value of the inertia coefficient and the dynamic friction coefficient. Then, a Kalman filter estimates the speed and the position of the machine., from differential state equations resulting from the analytical (electrical) model of the machine in the rotational reference frame, taking benefit of the estimated load torque. The robustness of the method was verified by Matlab/Simulink simulation for different speed and torque profiles., against parameter errors of the electrical (inductance and resistance) and mechanical (inertia and dynamic friction) models of a 5kW machine","PeriodicalId":358881,"journal":{"name":"2018 8th International Electric Drives Production Conference (EDPC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robustness Evaluation of a Sensorless Control of Synchronous Reluctance Motor with a Kalman Filter & a Luenberger Observer\",\"authors\":\"G. B. Mariani, N. Voyer\",\"doi\":\"10.1109/EDPC.2018.8658307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the simulation of a sensorless speed control method with estimates the position and the speed of a synchronous reluctance machine (SyncRM). Speed control implements Field Oriented Control (FOC)., fed with estimated speed and position. The method combines two different estimators. First., a Luenberger observer estimates the load torque of the machine from the mechanical model of the machine., knowing the value of the inertia coefficient and the dynamic friction coefficient. Then, a Kalman filter estimates the speed and the position of the machine., from differential state equations resulting from the analytical (electrical) model of the machine in the rotational reference frame, taking benefit of the estimated load torque. The robustness of the method was verified by Matlab/Simulink simulation for different speed and torque profiles., against parameter errors of the electrical (inductance and resistance) and mechanical (inertia and dynamic friction) models of a 5kW machine\",\"PeriodicalId\":358881,\"journal\":{\"name\":\"2018 8th International Electric Drives Production Conference (EDPC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 8th International Electric Drives Production Conference (EDPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDPC.2018.8658307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Electric Drives Production Conference (EDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPC.2018.8658307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了同步磁阻电机无传感器速度控制方法的仿真,该方法对同步磁阻电机的位置和速度进行了估计。速度控制实现场定向控制(FOC)。,以估计的速度和位置进给。该方法结合了两种不同的估计量。第一。, Luenberger观测器根据机器的力学模型估计机器的负载转矩。,知道惯性系数和动摩擦系数的取值。然后,卡尔曼滤波估计机器的速度和位置。,从机器在旋转参考系中的解析(电气)模型得出的微分状态方程中,利用估计的负载扭矩。通过Matlab/Simulink仿真验证了该方法在不同转速和转矩工况下的鲁棒性。,针对5kW电机的电气(电感和电阻)和机械(惯性和动摩擦)模型的参数误差
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness Evaluation of a Sensorless Control of Synchronous Reluctance Motor with a Kalman Filter & a Luenberger Observer
This paper investigates the simulation of a sensorless speed control method with estimates the position and the speed of a synchronous reluctance machine (SyncRM). Speed control implements Field Oriented Control (FOC)., fed with estimated speed and position. The method combines two different estimators. First., a Luenberger observer estimates the load torque of the machine from the mechanical model of the machine., knowing the value of the inertia coefficient and the dynamic friction coefficient. Then, a Kalman filter estimates the speed and the position of the machine., from differential state equations resulting from the analytical (electrical) model of the machine in the rotational reference frame, taking benefit of the estimated load torque. The robustness of the method was verified by Matlab/Simulink simulation for different speed and torque profiles., against parameter errors of the electrical (inductance and resistance) and mechanical (inertia and dynamic friction) models of a 5kW machine
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信