基于势融合特征的热门微博质量预测模型

Shaowei Li, Chengying Chi
{"title":"基于势融合特征的热门微博质量预测模型","authors":"Shaowei Li, Chengying Chi","doi":"10.14257/IJHIT.2017.10.9.03","DOIUrl":null,"url":null,"abstract":"In this paper, we put forward a potential fusion feature model to deal with the popularity prediction problem for Sina Microblogging. We analyze the characteristics of microblog forwarding number, number of views and comments. By combining the implicit relation between features, we fuse the n-gram model to establish a quality prediction model for microblogging. The characteristics of the model are combined with the regression model to predict the popularity of a microblog text. Our experiment results show that the model is effective.","PeriodicalId":170772,"journal":{"name":"International Journal of Hybrid Information Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Popular Microblogging Quality Prediction Model using Potential Fusion Characteristics\",\"authors\":\"Shaowei Li, Chengying Chi\",\"doi\":\"10.14257/IJHIT.2017.10.9.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we put forward a potential fusion feature model to deal with the popularity prediction problem for Sina Microblogging. We analyze the characteristics of microblog forwarding number, number of views and comments. By combining the implicit relation between features, we fuse the n-gram model to establish a quality prediction model for microblogging. The characteristics of the model are combined with the regression model to predict the popularity of a microblog text. Our experiment results show that the model is effective.\",\"PeriodicalId\":170772,\"journal\":{\"name\":\"International Journal of Hybrid Information Technology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hybrid Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/IJHIT.2017.10.9.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hybrid Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJHIT.2017.10.9.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对新浪微博的人气预测问题,提出了一种潜在融合特征模型。分析了微博转发数、阅读数和评论数的特征。通过结合特征间的隐式关系,融合n-gram模型,建立微博质量预测模型。将模型的特征与回归模型相结合,对微博文本的流行度进行预测。实验结果表明,该模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Popular Microblogging Quality Prediction Model using Potential Fusion Characteristics
In this paper, we put forward a potential fusion feature model to deal with the popularity prediction problem for Sina Microblogging. We analyze the characteristics of microblog forwarding number, number of views and comments. By combining the implicit relation between features, we fuse the n-gram model to establish a quality prediction model for microblogging. The characteristics of the model are combined with the regression model to predict the popularity of a microblog text. Our experiment results show that the model is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信