Paolo Costa, Hitesh Ballani, Kaveh Razavi, Ian A. Kash
{"title":"R2C2:机架级计算机的网络堆栈","authors":"Paolo Costa, Hitesh Ballani, Kaveh Razavi, Ian A. Kash","doi":"10.1145/2785956.2787492","DOIUrl":null,"url":null,"abstract":"Rack-scale computers, comprising a large number of micro-servers connected by a direct-connect topology, are expected to replace servers as the building block in data centers. We focus on the problem of routing and congestion control across the rack's network, and find that high path diversity in rack topologies, in combination with workload diversity across it, means that traditional solutions are inadequate. We introduce R2C2, a network stack for rack-scale computers that provides flexible and efficient routing and congestion control. R2C2 leverages the fact that the scale of rack topologies allows for low-overhead broadcasting to ensure that all nodes in the rack are aware of all network flows. We thus achieve rate-based congestion control without any probing; each node independently determines the sending rate for its flows while respecting the provider's allocation policies. For routing, nodes dynamically choose the routing protocol for each flow in order to maximize overall utility. Through a prototype deployed across a rack emulation platform and a packet-level simulator, we show that R2C2 achieves very low queuing and high throughput for diverse and bursty workloads, and that routing flexibility can provide significant throughput gains.","PeriodicalId":268472,"journal":{"name":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"R2C2: A Network Stack for Rack-scale Computers\",\"authors\":\"Paolo Costa, Hitesh Ballani, Kaveh Razavi, Ian A. Kash\",\"doi\":\"10.1145/2785956.2787492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rack-scale computers, comprising a large number of micro-servers connected by a direct-connect topology, are expected to replace servers as the building block in data centers. We focus on the problem of routing and congestion control across the rack's network, and find that high path diversity in rack topologies, in combination with workload diversity across it, means that traditional solutions are inadequate. We introduce R2C2, a network stack for rack-scale computers that provides flexible and efficient routing and congestion control. R2C2 leverages the fact that the scale of rack topologies allows for low-overhead broadcasting to ensure that all nodes in the rack are aware of all network flows. We thus achieve rate-based congestion control without any probing; each node independently determines the sending rate for its flows while respecting the provider's allocation policies. For routing, nodes dynamically choose the routing protocol for each flow in order to maximize overall utility. Through a prototype deployed across a rack emulation platform and a packet-level simulator, we show that R2C2 achieves very low queuing and high throughput for diverse and bursty workloads, and that routing flexibility can provide significant throughput gains.\",\"PeriodicalId\":268472,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2785956.2787492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785956.2787492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rack-scale computers, comprising a large number of micro-servers connected by a direct-connect topology, are expected to replace servers as the building block in data centers. We focus on the problem of routing and congestion control across the rack's network, and find that high path diversity in rack topologies, in combination with workload diversity across it, means that traditional solutions are inadequate. We introduce R2C2, a network stack for rack-scale computers that provides flexible and efficient routing and congestion control. R2C2 leverages the fact that the scale of rack topologies allows for low-overhead broadcasting to ensure that all nodes in the rack are aware of all network flows. We thus achieve rate-based congestion control without any probing; each node independently determines the sending rate for its flows while respecting the provider's allocation policies. For routing, nodes dynamically choose the routing protocol for each flow in order to maximize overall utility. Through a prototype deployed across a rack emulation platform and a packet-level simulator, we show that R2C2 achieves very low queuing and high throughput for diverse and bursty workloads, and that routing flexibility can provide significant throughput gains.