人脸识别研究进展

G. Thilagavathi, M. Suriakala
{"title":"人脸识别研究进展","authors":"G. Thilagavathi, M. Suriakala","doi":"10.1109/ICIEM51511.2021.9445327","DOIUrl":null,"url":null,"abstract":"Face detection and recognition have been explored with various supervised and unsupervised learning techniques. The foundation of all the algorithms is to detect the feature vectors from the face (eye height & width, lip width, ratio of distance between eye to nose etc..).Various classification algorithms are compared with different combination to analyze and decide which combination operates best. This paper, explains the various existing methods based on their accuracy on different kinds of datasets.","PeriodicalId":264094,"journal":{"name":"2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survey on face recognition\",\"authors\":\"G. Thilagavathi, M. Suriakala\",\"doi\":\"10.1109/ICIEM51511.2021.9445327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection and recognition have been explored with various supervised and unsupervised learning techniques. The foundation of all the algorithms is to detect the feature vectors from the face (eye height & width, lip width, ratio of distance between eye to nose etc..).Various classification algorithms are compared with different combination to analyze and decide which combination operates best. This paper, explains the various existing methods based on their accuracy on different kinds of datasets.\",\"PeriodicalId\":264094,\"journal\":{\"name\":\"2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEM51511.2021.9445327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEM51511.2021.9445327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脸检测和识别已经探索了各种监督和非监督学习技术。所有算法的基础都是检测人脸的特征向量(眼高、眼宽、唇宽、眼鼻距离比等)。对不同的分类算法组合进行比较,分析确定哪种分类算法组合效果最好。本文根据其在不同类型数据集上的精度,阐述了现有的各种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Survey on face recognition
Face detection and recognition have been explored with various supervised and unsupervised learning techniques. The foundation of all the algorithms is to detect the feature vectors from the face (eye height & width, lip width, ratio of distance between eye to nose etc..).Various classification algorithms are compared with different combination to analyze and decide which combination operates best. This paper, explains the various existing methods based on their accuracy on different kinds of datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信